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INTRODUCTION

Calcium is the fifth most abundant element in the

human body. Ninty-nine percent of calcium is found in

bone and the rest in muscle, tissue, blood and extra-

cellular fluid. Insoluble calcium as apatite is the

most important structural element in the bone; however

soluble calcium in the extraosseous tissues plays an

essential role im many diverse physiological processes

such as membrane integrity, enzymatic reactions, muscle

contraction and nerve transmission. Highly integrated

and efficient homeostatic mechanisms exist to maintain

and regulate these dual roles -- mechanical and physio-

logical.

The body is able to adapt to a wide variety of

external changes and still maintains its integrity.

Difference in nutritional intake is one of these major

variables. Calcium metabolism is not only affected by

the amount and form of calcium in the diet but also by

many other dietary constituents.

Protein is required in the diet in order to provide

the essential amino acids and nitrogen. The daily pro-

tein ingested varies both in quantity and quality for

any individual especially between individuals. However,

the effect of this most important dietary component on

calcium metabolism has not been well studied.

1
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More than half a century ago, Sherman (1) observed

that addition of meat to a diet caused an increase in

urinary calcium excretion. Milk, soybean curd, egg white,

gelatin, peptone, gluten and other protein sources were

also shown to influence urinary or fecal calcium by many

other investigators (Table 3, page 32). These findings

demonstrated that protein intake could affect calcium

metabolism. Until recently, there was no well controlled

human experiment to evaluate the relationship between

protein intake and calcium metabolism. During a series

of carefully controlled experiments using formula diets

to study the metabolic responses to varying protein intake,

Margen and Calloway1
' 2 observed a direct relationship

between protein intake and urinary calcium excretion.

The increase in urinary excretion has been attributed,

at least in part, to the enhancement of intestinal calcium

absorption3 (2).

Dietary surveys have demonstrated a wide variation

in calcium intake between individuals, geographical areas

and societies (3). A low calcium intake is very common

in many Asian and African countries. The protein intake

in these areas is generally low. In this country, about

85% of calcium intake comes from milk and dairy product

(4). Therefore, the individual who does not like or

tolerate milk and dairy products may have a high protein

but a low calcium intake. A well controlled human -
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experiment to study She effect of diet containing very

low calcium with either high or low protein ha not been

previously reported.

This experiment attempted to study the effect of

very low calcium diet with variable levels of protein

in order to simulate as well as exaggerate the two

different conditions described above. -Beca-use-e-f-the

-very--oew-calcium -intaace, this -experiment was also designed

to study the role of intestinal calcium absorption on

urinary calcium excretion, rate of production of endo,-

genously secreted calcium in the gastrointestinal tract,

and the dynamics of calcium metabolism in order to elu-

cidate the mechanisms of the calciuretic effect of high

protein intake.



REVIEW OF LITERATURE

Calcium Metabolism

Although most of the calcium in the body is insoluble,

calcium is still maintained in a dynamic state by continu-

ous absorption, exchange, deposition and resorption in

bone, excretion and other processes. The dynamics of cal-

cium metabolism are complex. An understanding of calcium

metabolism depends on the ability to measure these pro-

cesses in the body. Many investigators have attempted to

simplify this complex system by using certain schemes and

mathematical formulas, but there has been no general

agreement as to their validity as each model is probably

incomplete.

Absorption: Dietary surveys based on selected areas

and populations show that most people consume 200-1500 mg

calcium per day (3). The major source of dietary calcium

ranges from 88% from milk and dairy products in New Zea-

land to 72% from plant sources in the Philipines (4).

The ingested calcium is mixed in the gut with di-

gestive juice calcium. Only a fraction of both ingested

and endogenous calcium is absorbed. Some calcium is ab-

sorbed by diffusion and there is also an active transport

mechanism for calcium absorption, but the relative signi-

ficance of this active transport process is unclear (5,

6, 7 for rev.). Vitamin D is essential for this active

4
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transport. The absorbed vitamin D is converted to 25-

hydroxycholecaliferol in the liver. This metabolite is

then transported back to the intestinal epithelium where

it or its metabolites (8) exert a specific action on DNA.

It initiates a transcription process that leads to the

synthesis of a specific protein or proteins which are re-

quired for calcium active transport (7, 9, 10 for rev.).

This protein or proteins may be the specific calcium

binding protein of Wasserman et al. (7, 11, 12) and/or

the calcium-dependent-ATPase of DeLuca (10).

The efficiency of calcium absorption differs in

different segments of the intestine. Although the duo-

denum is the most efficient segment of the intestine in

terms of unit length in almost all mammals except the

hamster (13), the ileum is the most effective site for

calcium absorption because of the longer residence time

in this segment (14-16).

Aubert et al. (17) gave'two schemes for calculating

the true fractional absorption rate. The concept of

endogenous fecal calcium is dependent on the choice of

scheme. In the first scheme the endogenous fecal calcium

is considered the calcium secreted into the gut after

calcium absorption has taken place. The endogenous fecal

calcium in this scheme is a parameter independent of

calcium absorption and is a relatively constant value.

However, the second scheme consideres the endogenous fecal
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calcium as unreabsorbed digestive juice calcium. The

digestive juice calcium is considered to be mixed homo-

genously with ingested calcium and both are absorbed at

the same rate. Many factors can affect calcium absorption

therefore the endogenous fecal calcium in the second

scheme is a function of many factors.

Marshall (18) proposed another scheme and introduced

an additional parameter, A, which represents the fraction

of digestive juice calcium that is reabsorbed. He con-

sidered the a value to be between 0 and the fractional

absorption rate of dietary calcium, a. However, studies

on the absorption of digestive juice calcium showed some-

what different results. Heaney and Skillman (19) showed

a non-absorbable fraction of endogenous secreted calcium.

Schedl et al. (20) also found the digestive juice calcium

to be less available for absorption because it is readily

precipitated with secreted phosphate. Bristol and Regan

(21), however, demonstrated preferential absorption of

endogenous calcium from the bile. It appears then that

the value of i may be larger or smaller than a.

Resolution of the schemes has been accomplished in

several ways. Brine and Johnston (22) plotted dietary

calcium against fecal calcium and extrapolated the curve

to zero calcium intake. They considered the amount of

fecal calcium at zero intake of calcium to be endogenous

fecal calcium. Blau et al. (23, 24) were the first to



use radiocalcium in human subjects to determine these

parameters. Radiocalcium can be administered orally and/

or intravenously (17, 25). A double-isotope method has

also been applied for this purpose (26-28). Fractional

absorption rate and endogenous fecal calcium calculated

by many investigators are shown in Table 1. Because of

the different schemes, assumptions and methods, there is

substantial difference between these estimations.

Another method for evaluating the efficiency of

intestinal calcium absorption is to measure plasma ac-

tivity after a large oral dose of radiocalcium (33-35).

The peak of radioactivity in plasma is reached in one to

two hours and ranges from 0.3% to 3.9% of the dose per

liter of plasma. There is a good correlation between

the two hour plasma activity and the net calcium ab-

sorption (33, 34).

The efficiency of calcium absorption is influenced

by many factors. The mechanisms by which these factors

affect the efficiency of calcium absorption are far from

clear but are certainly diverse. They may induce, com-

pete or inhibit the transport mechanism of calcium in the

intestine, change the physicochemical properties of cal-

cium salts, interfere with the metabolism of intestinal

epithelial cells, and mdodify the general 6alcium meta-

bolism.

Vitamin D is the most important factor for the active
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Table 1

Fractional Calcium Absorption Rate

and Endogenous Fecal Calcium

Calcium Fractional Endogenous
Intake Absorption Fecal Cal- Methoda Reference
(V

i
) Rate (a) cium (Vef)

1~~~~~~~~~~~L'- 

mg/day mg/day

1900

722
616

107 & 135
529 & 638
1446&1740

0- 199
200- 399
400- 599
600- 799
800- 999
1000-1199

209
2180

200
800
2000

10mg/test
200mg/test
500mg/test

3 7-4 9 b I.V.+P.O. ,N=5

27
35

44 & 67
40 & 69
54 & 61

38
42
43
35
34
28

33
94

91 & 118
91 & 87
73 & 93

75

I.

30.5
63.6

67.9

23.3

79. 58.4d
25.6*7.9
21.8±4.3

I.V. ,N=2

P.O. ,N=2

M

From
Literaturec

I.V.+P.O.,N=21
to

I.V.,N-4
I.V.,N=6
I.V.,NN-4

I.V. (4Ca)+
P.( 28Ca)
N=28

130i47 I.V., N=36 (19)

aRadiocalcium administration, intravenously (I.V.) or
orally (p.o.). N= number of subjects, all subjects were
adults except those otherwise specified.

bAldolescent boys, age 11-16 years old.

CSee page 6 for the method of calculation.

dMean and standard deviation,

(29)

(30)

(24)

(22)

(31)

(32)

(26)
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transport of calcium, An understanding of its role at

the molecular level has been well advanced in recent

years (see page 4-5). Both sodium and potassium can

inhibit intestinal calcium transport probably because of

their competition for binding sites with calcium (7, 36,

37). Studies on the effect of magnesium on intestinal

calcium transport are conflicting. Intestinal calcium

absorption may increase, decrease or be unchanged by

magnesium (38). Calcium and magnesium possibly share and

compete for a common absorptive mechanism (39). The con-

flicting results are due to differences in amounts and

the relative ratios between calcium, magnesium and phos-

phorus used in the various studies (38).

Many factors affect the solubility of calcium salts

or the formation of complexes which may have different

permeability to the gut wall. The effects of lactose,

sOme other carbohydrate, amino acids, bile, bile salts

and many organic acids on intestinal calcium absorption

are considered to.-ocur on the ohange of solubility and/

or permeability of calcium salts.

Metabolic inhibitors such as fluoride, fluoroacetate,

2,4-dinitrophenol, phLoridzin, and malonic acid increase

calcium absorption in vivo and in vitro (7). Increase in

absorption also might be due to the inhibition of oxida-

tive metabolism which Schachter et al. (40) considered it

necessary to maintain the relative impermeability of the



gut to calcium. Lactose, which inhibits oxygen uptake,

phosphate uptake and the energy-dependent reactionshas

also been considered by some investigators to enhance

intestinal calcium absorption by this mechanism (41).

The efficiency of calcium absorption seems to de-

pend in part at least, upon the level of calcium intake

(Table 1). The adaptive mechanism and overall regula-

tory mechanism of calcium absorption are still not well

understood (see page 21. Analysing the results of the

kinetics of calcium metabolism in man and animal, Bronner

et al. (30), Aubert et al. (42), Phang et al. (32), and

Malm (43) found a linear relation between calcium ab-

sorption and other parameters of calcium metabolism such

as urinary calcium excretion and rate of calcium entering

bone. The intestinal absorption of calcium, therefore

can either influence or be influenced by other parameters

involved in calcium metabolism.

Although parathyroid hormone has been shown to in-

crease intestinal calcium absorption, there is no evi-

dence that it is a direct effect (44, 45). Many other

hormones have also been shown either in vivo or in vitro

to affect intestinal calcium in different degree (5).

Because other parameters of calcium metabolism are also

affected, the effects of hormones on intestinal calcium

absorption may be an indirect result of the effects on

kidney and/or bone (5).
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Excretion, Calcium is excreted mainly in the urine

and the feces. The sweat calcium loss is generally

considered very small and rarely 'included in balanee arid

kinetic studies.

In a review of the literature, Leitch and Aitken

(46) estimated at less than 20 mg per day the calcium loss

in sweat in a temperate and comfortable environment. A

few studies, however, show a large sweat calcium loss.

The summary of the results of these studies is shown in

Table 2. The amount varies greatly because of environ-

mental condition and physical activity. Methodology also

contributes to the differences. Estimated sweat calcium

loss varies from 0 to 6.2 mg per hour and less than 10 to

72 mg per day under non-sweating condition (Table 2).

Individuals subjected to prolonged heat and strenous

physical activity become acclimatized (49, 52). This can

affect the total amount of sweat, the concentration of

calcium in sweat and the total calcium loss. The amount

of sweat declines to 10-80% of the initial rate in 6

hours (52). The concentration of calcium in sweat also

drops dramatically from 5.26 to 0.4 mg per 100 ml sweat

by the end of a few hours (49).

The effect of calcium intake on sweat calcium loss

has not been well evaluated. There is no consistent rela-

tionship between calcium concentration in sweat and cal-

cium intake (49). There is also no evidence that a com-
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Table 2

Sweat Calcium Losses of Adults

timated Temperature Physcal Remarks Reference
Amun Activity

Not detect-
able

Insensible
Perspiration

<20 mg/day

90 mg/day

15.4*0.8 mg/day

Sweating at
800 mg/hr.

Non-sweating
condition

(4Footnote6)

Footnote5

<10 mg/day

21.3 mg/hr.

ca. 240°C

Temperate

Sedentary 42 days' study

Treadmill 3 hours' study
& bicycle

8.1 mg/hr.
111 mg/daya 22.20°C

11.6 mg/hr. 29,40C
137 mg/daya '

20.2 mg/hr.
201 mg/daya

6.2 mg/hr.

20.2 mg/hr.

8.5 mg/hr.

25.6 mg/4 0
min.

37.7°C

27-280°C

37-390 C

360C

ca. 250C

Ergometer
50 min. 6-8 Cal./min.
50 min. 3-4.5 Cal./min.

nI

Rest

Rest

Rest

Three periods
of ergometer

a3 mg/hr. was added to
of daily losses.

the rest of time for estimation

(47)

(46)

6

(48)

(48)

(48)

(48)

(49)

(49)

(50)

(51)

I
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pensatory mechanism exists between urinary calcium ex-

cretion and sweat calcium loss.

Calcium excretion in the urine is not only the most

important route for excretion but also plays a role in

calcium homeostasis. Many factors affecting general cal-

cium metabolism.or kidney function tends to affect uri-

nary calcium excretion. Because of our poor understanding

of the calcium transport system in tubular cells, the

mechanisms of these factors are little known.

The non-protein bound calcium is filtered through

the glomerulus. The calcium filtered load is the product

of glomerular filtration rate (GFR) and filtrable con-

centration of calcium. Variation in filtered load by

either one or both of these two variables affects the

urinary calcium excretion (53).

Some'hormones (53, 54), protein and other foods (55-

57), saline loading (55, 58) and drugs (55,59) have been

shown to affect GFR to different extents. The analysis

of the dynamics of urinary calcium excretion must take

into account the wide variation in GFM between individuals.

This can be done most easily by relating the urinary cal-

cium excretion to a fixed volume of glomerular filtrate.

The normal range is 0.05 to 0.15 mg calcium per 100 ml

glomerular filtrate (53).

The filtrable calcium concentration in plasma is

generally stable. Percentage of protein-bound calcium
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can be changed only slightly by some factors such as pH

(60), infusion of mannitol (61), and changes in plasma

proteins (62). A small percent of calcium exists as a

complex with anions (54, 63). Because these complexes

are filtrable through the glomerular membrane, adminis-

tration of anions such as citrate (62, 63), phosphate

(61, 64), sulfate (64, 65) and EDTA (61, 66) is able to

modify the concentration of filtrable calcium.

If GFR is 125 ml per min. and 60% of the calcium

is filtrable, more than 11 gm of calcium is filtered per

day. More than 98% of the filtered calcium is reabsorbed.

In normal individuals, the filtered load is linearly cor-

related to the urinary calcium (53). 'However, calcium

is always present in the urine even when the filtered

load is very low (53). This may be due to the inability

of tubular cells to lower the calcium concentration in

lumenal fluid below a minimal level (about 5 mg% in rat,

67). A very high filtered load does not seem to satu-

rate the reabsorptive mechanism (53).

The calcium is reabsorbed throughout the nephron

with the proximal tubules as the major site. Two-thirds

of the filtered calcium is reabsorbed in the proximal

tubules, 20-25% in Henle's loop and 10% in the distal

tubules. Diffusion seems to be the main process for

calcium reabsorption especially when filtered load is

increased. Active transport seems to take place along



the tubule but more in the distal tubule (67, 68). It

has been proven that there is bidirectional tubular flux

of calcium both in vivo and in vitro studies (54, 67, 69).

The filtered calcium complexes with anions are reabsorbed

either as complexes or as free ions after dissociation

(53, 70).

An increase or decrease in the removal of water in

the tubular lumen will change the concentration of cal-

cium, therefore, any osmotic change induced by any factor

is likely to affect the calcium reabsorption in tubules.

Mannitol, sucrose, urea, saline have been shown to in-

duce osmotic diuresis and subsquently enhance calcium

excretion in urine (5, 53, 54, 71 for rev.).

The pronounced correlation between urinary excretion

of calcium and other divalent alkaline earth cations has

been observed for years (54). The highest degree of in-

terdependence is found between calcium and strontium (54,

72). Still pronounced but a lesser correlation exists in

decreasing order between calcium and magnesium, barium

and radium (54, 73). A common '.transport mechanism for

all these alkaline earth cations seems likely and this

system transports calcium more readily than other cations

(54, 73). However, this interdependence can be altered

by dietary management such as low intake of magnesium (74),

very high or low protein intake1 '2 or infusion of either

calcium or magnesium7. Other mechanisms, therefore,
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besides this common transport system may also exist.

Calcium excretion is also directly related to the

excretion of sodium (53, 54, 71). The interdependence

is attributed to tubular reabsorption of these two ions

rather than the amount of filtered load (75). In vitro

studies also show that the fractions of two ions which

are reabsorbed are the same throughout the nephron (67,

68) indicating a common transport mechanism. Duarte and

Waltson (76), however, suggested a coupling mechanism

between these two ions rather than a common reabsorption

system.

Hemodynamic factors also influence profoundly the

urinary calcium excretion. Expansion of extracellular

space (77-79), vasodilation by acetylcholine or brady-

kinine (80, 81), increase in mean arterial pressure by

carotid occlusion or vagotomy (81). increase urinary ca1-

cium excretion. The vasodilation and elevation of mean

arterial pressure have a synergic effect (81). Decrease

in the arterial pressure',-on the contrary, has the re-

verse effect (81). These hemodynamic factors do not

affect the calcium filtered load (81). The site of me-

chanism of these hemodynamic factors must be beyond the

glomerulus. Some investigators considered the inhibition

of proximal tubular reabsorption to be responsible for

this effect8 '9 (81, 82). The inhibition was thought to

be due to the decrease in uptake of peritubular intersti-
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tial fluid because of the hemodynamic alteration (81, 82).

The effect on the other part of the nephrons, however,

is unknown.

If the metabolism of tubular cells is modified, the

reabsorption of calcium may be altered. Intake of glucose,

fructose, galactose, amino acids, protein and some other

nutrients (57, 83, 84, and Table 3), has been shown to

increase urinary calcium excretion. Ingestion of alcohol

(85) and infusion of insulin (83) have the same effect.

Lindeman (83) attributed this effect to an enhanced glu-

cose uptake and glycolysis in the tubular cells.

Metabolic acidosis and administration of acid can

increase urinary calcium (54, 86), however, metabolic

alkalosis and administration of alkali produced variable

responses in urinary calcium excretion (54, 87, 88).

These changes in urinary calcium have been attributed to

the effect of pH on the metabolism of renal tubular cells

(86), on calcium filtered load in glomerulus (88), on so-

dium clearance (75), or on bone minerals (89,90).

At least six hormones have been shown to affect the

urinary calcium excretion. They are parathyroid hormone,

calcitonin, thyroid hormone, gonadal hormones, cortico-

steroid hormones and growth hormone. The effects of these

hormones have been reviewed by Bronner (5), Walser (54),

Epstein (71) and Nordin et al. (53). The effects of these

hormones have been considered to.be either primary on
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renal handling of calcium excretion or secondary to the

effects of hormones on the bone and/or the gut. Different

or contradictory results between investigators have also

been reported frequently.

There are also other physiological, environmental

and pathological factors influencing urinary calcium

excretion. Diurnal and seasonal variation has been ob-

served for years (53, 54). Differences in food and ac-

tivity can affect this variation but hardly explain it

(53). Activity, posture, weightlessness, temperature all

have been shown to affect urinary calcium excretion in

varying degrees (5, 53, 54, 71).

C&lcium metabolism in bone and calcium homeostasis:

Bone contains 99% of the total calcium in the body and the

calcium which constitutes about one-quarter by weight of

fat free dried bone, is the most important structural

element in bone. The metabolism of either bone or calcium

is influenced profoundly by the metabolism of the other.

Bone is constantly being replaced by resorption of

existing areas and apposition of new bone. Osteoblasts

secret soluble collagen into the extracellular space.

The collagen then aggregates to form fibrils which com-

prise 95% of the organic substance of bone matrix. The

rest consists mainly of mucopolysacoharide, glycoprotein,

and phospholipid (91, for rev.).

A normal metabolism of organic matrix is essential
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for a normal metabolism of calcium in bone. Metabolism

of the main component of organic matrix, collagen, has

been known for years to be affected by many dietary fac-

tors such as protein and essential amino acids (92, 93),

iron (93), copper (93,94), vitamins C, D, A, E, B
6

and

nicotinic acid (93,95). The physical structure of colla-

gen may also be modified by these factors (91, 96). Many

hormones such as growth hormone, thyroid hormone, para-

thyroid hormone and glucocorticoids can also alter the

rates of synthesis and/or degradation of collagen (92).

The metabolism of bone matrix can be evaluated by

plasma alkaline phosphatase activity and urinary.,hydroy:-

proline excretion. Plasma alkaline phosphatase originates

primarily from osteoblasts and chondroblasts and small

fraction from the liver cells (97, 98). The plasma ac-

tivity of this enzyme, in the absence of liver disease,

is correlated with bcne matrix formation (99). Urinary

hydroxyproline comes exclusively from breakdown of colla-

gen. Collagen in bone consistutes more than half of

total collagen in the body and is also 2-5 times more

metabolically active than other collagen (100, 101).

Urinary hydroxyproline, therefore, is a good index of

degradadation of collagen in bone, if the dietary colla-

gen can be limited (102, 103).

Calcification is initiated in the aggregated colla-

gen fibrils. The exact mechanisms and processes of cal-
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cification are still not clear. The unique structure of

bone collagen seems to be essential for caleification (91

for rev.).

The resorption of bone takes place by dissolving the

minerals and digesting the organic matrix. Enzymes se-

creted by the osteoclasts are thought to be responsible

for resorption. To a. lesser extent osteocytes can also

resorb perilacunar bone (104, 105, 106 for rev.).

This continuous remodeling of bone is not only im-

portant for the structural integrity of bone but also

plays a critical role in calcium homeostasis. Calcium

is released from or taken up by bone during the remodeling.

Increase or decrease of calcium in the bone is not only

affected by the bone volume changes (apposition or re-

sorption) but also by the continuous changing of calcium

density in the bone (18).

Processes such as bone volume changes (apposition or

resorption rates) or calcium density changes (augumen-

tation or dimunition rateS) can be measured quantitatively

by various methods (104, 105, 18 for rev.). Internal

marking with substance such as tetracycline (107) can

measure the linear apposition rate. A rate of 0.8 i 0.3

A per day has been observed in the adult human rib (108).

A more quantitatively and specific study of calcium dy-

namics in the bone can be achieved by using quantitative

autoradiography (109). Calcium density can be calculated
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from quantitative microradiography (110). Cameron and

Sorenson (111) introduced the technic of photon bean

scanning by employing 125I to provide a monochromic en-

ergy source to measure bone mineral content.

All parameters using the above methods serve only

to measure localized bone. Calcium metabolism in the

bone of whole body is best studied by radiocalcium.

This method was first developed by Bauer et al. (112,

113), Heaney and Whedon (114) and Aubert and Milhaud

(115). They measured primarily the pool size and turn-

over rate. The rate of calcium entering and leaving bone

can then be calculated from the pool size, turnover rate

and calcium balance. These calculated rates represent

not only a single physiological process but rather the

result of multiple processes (104, 107). For example,

the rate of calcium entering bone includes primary and

secondary calcification, periosteocytic deposition, and

long term calcium exchange.

The conventional method of radiocalcium technic is

to administer single intravenous dose. Some also ad-

minister radiocalcium by continuous intravenous infusion

(116) or continuous oral feeding (117). The measured

values differ greatly between investigators due to dif-

derences in duration of study, methods of administration.

of tracer, theoretical basis and assumption for calcu-

lation and so on. Heaney (118), Aubert et al. (17) and
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Marshall (18) have excellent reviews discussing these

differences and the evaluation of these values.

The mechanisms controling the magnitude, location

and balances of bone remodeling are still not clear (104,

105). One of these control mechanisms, parathormone-cal-

citonin mediated resorption is specially important for

calcium homeostasis.

The plasma calcium level is strikingly constant.

Wide variation in dietary calcium and calcium excretion

produces no significant change in plasma calcium level.

Diurnal fluctuation is less than 3% (119). The recovery

from hypercalcemia induced by calcium infusion or hypo-

calcemia induced by EDTA injection is remarkably rapid

in normal individuals (120 for rev.).

Parathyroid hormone (PTH) and calcitonin are con-

tinuously secreted to maintain normal plasma calcium

level. Their rates of secretion ire controlled by the

the plasma calcium level. PTH secretion is increased by

low plasma calcium. At least two types of metabolic

effects on bone have 'been shown by PTH (121). One is an

effect on osteocytes enhancing osteolytic activity and

thereby releasing calcium rapidly. The other is to stimu-

late mesenchymal proliferation and osteoclast induction.

Vitamin D seems to be required for these effects of PTH

(104, 121). These effects of PTH also tends to be en-

hanced by heparin (122), low calcium and phosphate levels
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(104, 123), but is inhibited by vitamin D deficiency (104,

123) and fluoride (124). Recent studies indicate that

direct activation of adenyl cyclase is the primary action

of PTH. The cyclic 3',5'-AMP is the intracellular me-

diator of the physiological action of PTH,(125 for rev.).

Calcitonin secretion, on other hand, is increased by

high calcium plasma level (120). Calcitonin inhibits

bone resorptive process. Bone formation is also shown to

be increased by calcitonin. By these actions, calcitonin

can inhibit the release of calcium from bone and lower

the plasma calcium level (104, 105, 120 for rev.). The

action of calcitonin seems not related to the adenyl

cyclase-cyclic AMP system (125).

Besides these principle regulatory mechanisms, cal-

cium homeostasis is also achieved to a lesser extent by

the buffering action of a miscible pool, urinary excre-

tion, intestinal absorption and excretion, and the effect

of phosphate on the deposition of calcium in the bone and

tissues (120).

Adaptation to low calcium intake

Extensive studies attempting to estimate calcium

requirement have been done since the begining of this

century (126 for rev.). The estimated calcium require-

ment for the maintainance of an adult man varies from

126 mg to 1020 mg per day or 1.9 to 15.7 mg per kg per

day (126). A strikingly low calcium requirement among



the Chinese (127), Japanese (128), Peruvians (129), Afri-

can Bantu (130) and Ceylonese (131) was noted regardless

of the method of measurement used.

Most studies in Europe and U.S., however, show a

remarkably negative balance with low calcium intake. A

marked difference in calcium requirement is later ob-

served in all populations regardless of race and geo-

graphical area (126). Low requirement seems to reflect

mainly the past dietary habits and calcium reserve in

the body (126).

Bauer et al. (132) did not observe a definite adap-

tive process in their long term experiment attempting to

measure endogenous calcium loss. McClellan et al. (133)

gave two arctic explorers a pure animal meat diet which

usually supplied only 0.05-0.15 gm calcium per day. One

subject showed a significant decrease in his calcium ex-

cretion about 90 days after the start of experiment.

Thorangkul et al. (134) conditioned 2 groups of young men

to different calcium intake levels, one group 350-750 mg

per day and the other 1250-2000 mg per day. They then

took part in a 16-day balance study with a low calcium

intake of 175-253 mg per day. Both groups were in nega-

tive balance, but the group accustomed to a lower calcium

intake excreted much less urinary calcium and had a lesser

negative balance. During a 95-day extension of the study,

both groups showed a gradual improvement in calcium re-
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tention. More extentive study by Malm (126) using a

longer period (average 240 days) and a larger group (26

men) showed marked individual differences in adaptive

processes. After an average of 218 days on about 940 mg

calcium per day intake, subjects received about 460 mg

calcium per day for various periods (70-812 days). There

were three different kinds of responses among the subjects:

1. Three subjects adapted immediately.

2. Improvement of negative balance after various periods

(42-252 days) was noted for 20 subjects.

3. Three subjects showed a continuous negative balance up

to 18 months after the experiment.

These adaptive processes have also been demonstrated

in the rat (135), the dog (136) and cattle (137). Ger.

shoff et al. (136) demonstrated that the calcium needed

to maintain balance in adult dogs was largely a reflection

of their previous calcium intake during growth. Age seems

to retard the adaptive processes in the rat (135), but

this fact is not well documented for human.

The adaptive processes are due to an increase in

absorption and/or a decrease in urinary calcium excretion.

Malm (126) indicated that intestinal adaptation was the

most important factor. Thorangkul et al. (134) and John-

ston and Flosom (138), however, showed that a decrease

in the urinary excretion played a more important role in

adaptation to low calcium intake.



26

The mechanisms that detect the'sufficiency of calcium

in the body and initiate a greater intestinal absorption

and/or lesser urinary excretion are still unclear. Para-

thyroid hormone was suggested by some investigators as

the regulatory factor for adaptation (7, 32, 139). Phang

et al. (32) even suggested that intestinal absorption

might act as a triggering mechanism for the secretion of

the hormone. However, parathyroid gland and parathyroid

hormone have been shown to be non-essential in the adap-

tive processes in animal studies (45, 140).

Nicolaysen (141) postulated an endogenous factor or

factors produced in the bone in response to the unsatu-

ration of bone to regulate intestinal absorption. Efforts

to isolate these factors have not been successful. Stan-

burry (142) also indicated in his study that there was

evidence of some humoral agents which regulated absorption

according to prevailing needs of body. However, the study

of Malm (126) showed that osteoporosis did not necessarily

contribute to an efficient adaptation to low calcium in-

take.

The specific calcium binding protein of Wasserman et

al. (11, 12) may play an essential role in these adaptive

processes. This protein is increased in the intestinal

mucosa of the animal adapted to a low calcium intake (143).

The mechanism that triggers the increase of calcium binding

protein is still unknown.
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Adaptation to Dietaryr protein level

Protein is required by the body to provide essential

amino acids and nitrogen for synthesizing amino acids,

protein and other nitrogen containing substances. Other

than the essential amino acids, nitrogen can be provided

fairly well from non--protein or non-amino-acid nitrogen

(144, 145). However, protein is still the most conven-

tional source of both essential amino acid and nitrogen.

The gastrointestinal tract and digestive glands

play an important role during alteration of the dietary

protein level. Proteolytic enzymes such as trypsin in

the digestive juice increase as dietary protein increase

(146), however, protein hydrolysate does not induce this

effect (147). Either nervous reflexes or hormonal agent

may be involved in the regulation of the release of these

enzymes. The gut is not a limiting factor for digestion

and absorption even if dietary protein level is increased

to 600 gm per daylO .

Ingestion of a meal stimulates the release of a

large quantity of endogenous protein into the gut lumen.

These endogenous proteins come from shed mucosal cells,

digestive juices and plasma protein. Hydrolysis of this

protein mixture yields an amino acid pool with a relatively

constant ratio regardless of the meal ingested. This kind

of amino acid regulation in the gut lumen can prevent the

large fluctuation of the amount and the ratio of the amino



acid pool. This may contribute to a maximal efficiency

in absorption and utilization of amino acids (148 for

rev.).

With a lack of dietary protein or specific amino

acids the gut and digestive glands decrease their protein

content rapidly (149). However, it has been shown that

there is a rapid restoration when the dietary protein

level is increased (149). Liver, kidney, heart, skin,

muscle and other tissues have also been shown to lose or

restore the protein contents similarly but at different

rates when the protein intake is varied. This concept

of labile-protein or protein-reserve was introduced more

than one century ago as one of the mechanisms that allows

the body to adapt to variable protein intake (149-152 for

rev.).

Another process, alteration of protein turnover, is

also an important mechanism for adaptation. Turnover is

meant to imply the replacement of an amount of degraded

protein by an equal quantity of newly synthesized protein

from its metabolic precursors or transported into the

system from outside (153, 154). An abrupt change of either

rate of synthesis or breakdown of protein can be induced

by high or low protein intake. Modification in the rate

of other process is followed until a new steady state is

reached.

High turnover rate of many proteins has been found
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during higher protein intake (152-154). This higher

turnover is accompanied by increase in many enzymes in-

volved in protein synthesis or degradation such as urea

cycle enzymes (154, 155), enzymes for amino acid degra-

dation and transamination (154-158). An excessive in-

take of a single amino acid also leads to an adaptative

increase in degradation pathways of this amino acid (154,

159, 160). The presence of labile-protein or reserve-

protein at least partly can be attributed to the changes

of these "induced" enzymes.

Protein intake and calcium metabolism

An effect of dietary protein on calcium metabolism

has been shown for a long time. Earlier in this century,

calcium was considered to be absorbed more readily in the

form of "calcium proteinate" than in other form (161 for

rev.). Sherman (1) found that addition of meat to the

diet caused an increase in urinary calcium. Mellanby

(162) also observed a definite antirachitic effect in

lean meat which was not comparable with that of anti-

rachitic vitamins. All of these observation suggested

that protein intake played a role in calcium metabolism.

On the other hand, calcium in the diet was also shown to

affect protein metabolism. Ranganathan and Rau (163)

found the biological value and digestibility of protein

in the Indian diet increased significantly in the rat

after supplementation of calcium.
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The observation of Sherman (1) was later noted re-

peatedly by Kunerth and Pittman (164), Pittman and Kunerth

(165), McClellan et al. (133), and Hegsted et al. (129).

The increase in protein intake after addition of meat to

the diet was considered as the primary factor responsible

for this calciuretic effect. McCance (2) further proved

that the calciuretic effect could be induced by supple-

mentation of partially purified protein source such as

peptone, gluten, gelatin and egg white. The summary of

the results of these studies is shown in Table 3.

There were only few subjects studied *in most of

these studies. Other than calcium intake, many other

components of diet were not balanced at the two levels

of protein intake. Because many dietary factors other

than protein have been shown to affect the urinary cal-

cium excretion greatly (see page 13-18), the significance

of these studies, therefore, is obscured for not con-

trolling the other dietary factors.

A series of experiments to study the metabolic re-

sponse to varying protein intakes has been carried out
12,13by Calloway and Margen 2 . A more purified protein was

used and dietary components other than protein were also

carefully controlled to maintain a constant level. A

direct relationship between urinary calcium and dietary

protein level was noted1 '2'3 A subject may excrete more

than 8 times the amount of calcium during the highest
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dietary protein level (about 600 gm protein per day) than

he does during the protein-free diet period.

Fecal calcium is also found to be decreased in most

of the studies during the higher dietary protein level

(Table 3). Increase in urinary calcium excretion has

been attributed by some investigators to an enhancement

in intestinal calcium absorption3 (2). The effect of

protein intake on calcium retention, however, is not

clear. Higher protein intake may cause an increase, de-

crease or no significant change in calcium retention

Table 3).

Skeletal growth and structure are also profoundly

affected by the quantity or quality of dietary protein.

In animal studies dietary protein deficiency or lack of

essential amino acids will slow down skeletal growth and

alter skeletal structure (168, 169). The epiphyseal

cartilage is narrowed, the number of the cartilage cells

is reduced and the arrangement of cells is disturbed, and

the trabeculae of the subepiphyseal zone is also decreased.

On the other hand, addition of extra protein to the

diet also has a deleterious effect in bone. A diet low

in calcium but high in protein can lead to a severe osteo-

porosis (169). Engstrom and DeLuca (170) also showed a

lesser calcium content of bone in rats fed a high protein

diet with either a low-phosphorus or low-phosphours-low-

calcium intake than in the rats fed a medium intake of



Effects of Protein Intake on Calcium Metabolism

Supplement of Protein Calcium Urinary Fecal Calcium Number
Type Amount ake Calcium Calcium Balance of Reference

g/daType Amount mg/d A B A Subjects.

Meat ? 390 400 280 360 110 190 0 -150 1 (1)

Milk 25 448 452 99 106 513 326 -164 +26 3 (166)

Soy bean curd 24 - 448 451 111 115 443 322 -106 +14 3 (166)

Meat 35 458 436 123 136 416 334 - 81 -34 3 (164, 165)

Peptone,egg I
white,gluten, 130 634 625 72 107 602 531 -40 - (2)
gelatin

Meat 36 362 338 129 144 214 165 +19 +29 10 (129)

Meat, milk 93 1408 1407 175 338 1223 1154 +10 -84 6 (167)

Egg albumin 73 900 900 107 190 -- -- -- -- 4 Footnote2

Egg albumin,soy t 3
protein,dasein 525 2300 2300 100% 438% -- -- -- -- 4 " 3

aB, before and A, after supplementation of protein

Table 3.
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protein with the same level of calcium and phosphorus.

Increase in calcium intake in these two experiments can

prevent this effect. In two weight-controlled groups of

rats fed at different levels of casein, Shenolikar and

Narasigna Rao (171) showed that the group maintained at

the high dietary protein level (casein 40%) had a sig-

nificant decrease in ash content of the bone as compared

to that of the lower dietary protein level (5%). The

calcium intake in this experiment, however, was not low

(0.5% in the diet).

To date the mechanisms of these effects of protein

intake on calcium metabolism have not been well studied.

Amino acids and urea have been shown to increase the

solubility of calcium salt (172, 173) and/or to form

complexwith calcium (173, 174). Wasserman et aL (175)

demonstrated that lysine and arginine promote the in-

testinal absorption of calcium and other amino acids have

little or no effect. Raven et al. (176) also proved that

lysine had to be present with calcium in order to enhance

calcium absorption in a ligated intestinal segment. The

theory that amino acids increase the solubility or forma-

tion of complexes does not seem to explain the differences

between the amino acids. Many amino acids have a pro-

nounced solvent action or form stable complexes but have

little or no effect on calcium absorption (174).

Variable protein intake can exert some changes in
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renal function. The role of these changes in calciuretic

effect of high protein intake has not been well evaluated.

Endogenous creatinine clearance is a good and also

convenient method to evaluate glomerular filtration rate

(GFR, 56, 177). Variable protein intake has been shown

to affect the creatinine clearance rate (177 for rev.).

\Because tubular secretion of creatinine exists (178), it

is not certain the increase in creatinine clearance during

higher protein purely results from increase in GFR. How-

ever, a consistent relationship between inulin clearance

rate and protein intake strongly indicated that GFR is

increased by dietary protein (179). The mechanism by

which protein feeding increases GFR is still not well

known. GFR in the dog is shown not only to be increased

immediately after protein feeding but also persists for

hours or days (180). The action of protein is probably

due to the effect of amino acids, because feeding or in-

fusion of amino acids has a similar effect (181)

Other than GFR, the enzymatic activity involved in

transport has also been shown to be modified by variable

protein intake. Katz and Epstein (182) fed rats a high

protein diet (50% protein) for 7 days. The specific ac-

tivity of sodium-potassium-activated-adenosine-triphos-

phatase (Na-K-ATPase) in the kidnely was increased signi-

ficantly. Other enzymes such as glucose-6-phosphatase,

glutaminase or succinic dehydrogenase were not affected.



Na-K-ATPase is directly involved in the active transport

system for sodium. The increase in activity of ehtyme is

correlated to the increase in reabsorption of sodium.

However, no comparable research has been done to study the

relationship between enzymes involved in calcium reabsorp-

tion and protein intake.

The mechanism of the effect of high protein intake

on bone has also not been well studied. Engstrom and

DeLuca (170) considered some unknown factor in egg white

to be responsible for decrease in bone mineral content in

their study. This factor is associated with conalbumihma

ovomucoid-lysozyme fraction of egg white, but the nature

of such a factor is unknown. However, El-Maraghi et al.

(169) using semi-synthetic diets containing mainly casein,

maize, starch, cellulose and other supplements still noted

a similar effect. They considered that a high protein

diet promoted the deposition of bone matrix. When there

was insufficient calcium intake, the resorption of existing

bone to provide minerals for the new area was taken place

probably through stimulation of the parathyroid hormone.

This mechanism is postulated to lead to the development

of osteoporosis.

Decrease in food intake has been shown to block colla-

gen cross-linking in rats (96). Structural changes of

14collagen were also noted by McClain when the animal was

fed various diets (including high protein diet). These
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observations were found in collagen in skin and connective

tissue other than bone. Because the collagen in the bone

is 2-5 times more metabolically active than the other

collagen (100, 101), the structural changes in bone colla-

gen are very likely to be even more responsive to the

changes in protein intake. The unique structure of bone

collage is essential for normal calcification (91). The

possible structural changes of bone collagen by high pro-

tein intake may be an important mechanism leading to the

development of osteoporosis.

Prolonged acid loading has been shown to cause an

increase in urinary calcium excretion and bone resorp-

tion (54, 86, 89, 90). It is also well known that pro-

tein produces an acid ash. Therefore, some investigators

considered that the effects of dietary protein on calcium

metabolism were mainly those of acid loading (90, 183).

Ingestion of bicarbonate at the same time as protein

supplementation could reduce substantially the calciuretic

effect of high protein intake (183). The exact mechanisms

by which prolonged acid loading affects calcium metabolism

are still unclear (see page 17).



EXPERIILENTAL

Six healthy male volunteers were confined to a meta-

bolic unit for sixty days. These subjects ranged in age

from 22 to 32 years. Their weights afid heights on ad-

mission ranged between57.5 to 82.4 kg and 172 to 192 cm,

respectively (Table 4). The study was divided into four

metabolic periods of 15 days each. During each of the

first three periods the subjects received a low calcium

diet (ca. 100 mg per day) with one of the following levels

of proteins protein-free (0.9 gm nitrogen per day),

medium-protein (12 gm), high-protein (24gm). The order

in which the diets were given varied for every subject

(Table 5). During the last period all subjects received

the medium-protein diet but four subjects were supplemented

with approximately 900 mg calcium per day. They were all

ambulatory. Exercise periods were required every day

which consisted of two 30 minutes sessions walking on a

treadmill set at 3 miles per hour at a 10% grade. Other

exercise was not controlled and additional activities were

allowed.

Diet composition, preparation and analysis:

The diets contained the smallest-'amount of calcium

that could be obtained at a protein' level of 24 gm ni-

trogen per day. In order to prepare such low calcium

diets with three different levels of protein, individual

dietary components were analyzed and calculations were

37
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Table 4.

Description of Subjects

Height
(cm)

192

182

172

180

181

183

Surface Areaa

(m2)

1.95

1.86

1.55

1.68

1.71

1.77

aAccording to Boothby-Sandiform

Subject Age

(yrs)

2

3

4

5

6

Weight

(kg)

82.4

80.4

57.7

63.9

66.2

71.7

22

22

25

32

23

24

Nomogram
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Table 5.

Dietary Periods Designa

Order of Subject
Period 1 2 3 4 5

1 24N 0.9N O.9N 24N 12N 12N

2 0.9N 24N 12N 12N 24N 0.9N

3 12N 12N 24N 0.9N O.9N 24N

4 12N 12N 12N+Ca 12N+Ca 12N+Ca 12N+Ca

aDietss 24N: high-protein diet,24 gm nitrogen per day

12N, medium-protein diet, 12 gm nitrogen per day

O.9N: protein-free diet, 0.9 gm nitrogen per day

+Ca: calcium supplementation, 900 mg per day
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made for various combinations of food and formula. Three

diets were then developed which contained approximately

the same food composition except for the amount of protein

and carbohydrate. The composition of three diets are

shown in Table 6.

Samples of the diets, both individual food items

and total composites were well homogenized using a

blender and a Polytron (Linematica GMBH, Luzern-Schweiz).

Nitrogen was determined by micro-Kjeldahl method. After

wet ashing with a perchloric-nitric-sulfuric acid mixture,

the content of sodium, potassium, calcium and magnesium

was determined by atomic absorption spectrophotometry (184),

phosphorus by an automated adaptation of the phosphomo-

lybdic reduction method (185). Aminco-Cotlove Chloride

Titrator (American Instrument Co.) was used for chloride

determination (186). The variation in dietary intake of

nitrogen and minerals is shown in Table 7.

All the food and formula were prepared in large

quantities, weighed into containers for individual meals,

and frozen until needed. Diets were then defrosted,

heated if required, and served. Each subject received

four meals a day at 8:30 A.M., 12:30P.M., 5:30 P.M. and

9130 P.M.. Table 8 indicates the menus and methods of

preparation of some food items for the various meals

during each period. The caloric intake needed by indi-

vidual subjects to maintain body weight was provided by



Table 6 Diets, -Compositi on-i

Diets
Items Brand Name 0.9N 12N 24N

gm / day

Dextrimaltose Mead Johnson
Cornstarch Buffalo
Lard Wilson
Margarine,salt Safeway

free
Safflower oila Co-Op
Citrus Pectin Sunkist Growers
Sucrose C & H Cane
NaCl c
Rusk, low - Carlo Erba, Milan
protein Italy

Spaghetti, low Carlo Erba
protein

Minute Rice General Food
Corn oil Mazola oil
Turkey, all Armour
white

Cranberry sauce Ocean Spray
Beef, ground & CO-Op

low fat
Soysauce Kikoman, Japan
Peanut oi4 Planters
Olive oil Star
Dry banana Beatrice Foods
Lecithin Midland
Magnesium Oxide c
Ca Carbonate c
KH PO c
KOf, r5% c.
NaOH, 97% c
NaCl, c
Benzoid acid c
HC1i 11.4N c
Tea, instant Lipton
Vitamin Cap.A h

.. tt' B
Trace Min. Cap. h
Choline Tabl. h

aDifferent oils used in order to
acids in three different diets.

100
90
34
34

15
1.0
75
4.0

130

30
31 f
0.95 f
0.037
5.0 d
0.07

3 5 d
4.0 

4.0

20

38

12b

O. 64

3.0b
100

100

35
10
140

90
182

b

3o
31 f
O.87f

0.0 
1.8
O. 17e
0.4j
1.3
0.002
0.18 mle
4.0

15

30

20 b

0.60

2.0b

64

50

35

316

100
355

5 b

8.5b

0.75

4.0
1 cap./day lcap./day 1 cap./day

of. it.~ ..

3 cap./day 3cap./day 3
4
cap./day
Tab./day

match the polyunsaturated fatty

bComponents of meat sauce ( see Table 8 footnote f)

41
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Table 6 Diets Composition (continued)

CReagent grade chemicals

dMinerals were dissdo6ed in 40 ml water to make mineral solution 1
and 10 ml was given each meal.

eMinerals were dissolved in 40 ml water to make mineral solution
2 and 10 ml was given each meal.

fMagnesium oxide and calcium carbonate were mixed with dry ba-
nana, because it would form precipitate with other minerals
in the mineral solution.

gFor pH adjustment

hSee Table 9



Table 7 Nitrogen and Minerals Contents of Compositesa

Diet Nitrogen Calcium Sodium Potas iimu Magnesium Phosphorus Chloride

gm/day

0.9N 0.87-0.91 0.097-0.100 3.45-3.47 3.04-3.16 0.64- 0.69 2.00-2.07 4.44-4.54

12N 11.9-12.2 0.105-0.106 3.03-3.08 3.12-3.44 0.62- 0.68 2.00-2.02 4.05-4.15

24N 23.4-24.2 0.086 3.02-3.19 2.67-2.78 0.59-0.62 1.64-1.69 4.12-4.31

aComposite samples,intake of an entire day. :The part fdr caloric adjustment was not in-

cluded.
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Table 8 Menu of Different Dietsa

Meal Diet

Time HihProtein-re(0.9N)Mium Protein-free(0.9N) Medium Protein(22N)
i . . .L I I I I

8:30 Tumblerof formulab
A.M. Rusk & Margarine

Lecithin
Mineral solution 1
Instant tea

12:30 Same as above plus
P.M. Dry banana with MgO

and CaCO3

5:30 Same as meal of
P.M. 8:30

9i30 Same as meal of
P.M. 8:30

Ricec Rice
Rusk &dMargarine Turkey & Cranberry
Turkey & Cranberry sauce
sauce Instant tea

Mineral solution 2 MgO & Pectin solution
Instant tea

Spaghettie, eef & Beef & meat sourcef
.,meat sauce Rusk & Margarine
Mineral solution 2 MgO & Pectin solution
Instant tea Instant tea

Same as tbal of Same as meal of 8830
8130 except rice except the rice omitted
omitted and rusk & margarine

added

Rusk & margarine Rusk & margarine
Spaghetti, beef & Spaghette,beef &
meat sauce meat sauce
Mineral solution 2 MgO & Pectin solution
Instant tea Instant tea

aDaily amount and characteristics of different food items shown
in Table 6, equal parts were divided from this daily amount if
served for more than once a day.

bDry ingredients(dextrimaltose, cornstarch, citrus pectin, suc-
rose, salt) were first weighed and mixed. Correct amounts of
lard and salt free margarine were melted and mixed with weighed
safflower oil, then the fats were mixed with the dry ingredients.
The formula were hydrated with deionized water and brought to
a temperature of 78 C. After blending7 the formula was weighed
into individual tumblers and stored frozen until served.

CRice was prepared by pouring boiling water into the rice con-
dtainers with minute rice in it.
Precooked frozen turkey was heated in foil at 350 F for 15-30 min.

eSpaghetti was boiled in deionized water for about 8 min. and
served with beef and meat sauce.

fWeighed ground beef was browned. Meat sauce was made from the
meat juices, water, cornstarch,soy sauce, salt and different
oils(12N and 24N diets had different components, see Table 6).
The beef and meat sauce were divided into individual containers
frozen with the spaghetti until served.
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Table 9 Content of Vitamin, Trace- Minerals Capsulea

Vitamins mg/capsule Trace Minerals mg/dapsule

Capsule A

Thiamine mononitrate

Riboflavin

Pyrido xine hydrochloride

Vitamin B1 2( 1% resin
adsorbate)

Biotin

Vitamin K

Ascorbic acid

2.20

3.15

5.25
0.24

0.06

1.20

55.0

FeS0O,7 H20
CuC12.2 H20

ZnS04.7 H20

MnSO4. H2 0

Na2Mo04 2 H20

Cr2 (S 4 )3.15 H20

Na2 Se03.10 H2 0
AlK(SO4 )2.12 H20
KI

Capsule B

Folic acid 0.66

Niacinamide 21.0
Calcium panthothenate 12.0
Vitamin E 25 IU/capsule
Vitamin A 4307 USP/capsule
Vitamin D 440 USP/capsule

Choline Tablet

Choline dihydrogen citrate 0.65 gm/Tablet

16.7

1.79

21.9

5.12
0.21

1.07
0.016

28.3

0.2

aPrepared for Department of Nutritional Sciences,University
of California, Berkeley by Miles Laboratories, Elkhart, Indiana.
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addition of different amounts of sugar and candy1 5 to

the basal diet. Vitamins and trace minerals were su-

pplemented as capsules. The amount and composition of

these capsules are shown in Table 6 and 9. In addition

to the lOOOml tea per day, the subjects were required to

drink 1000 ml distilled water. Additional water intake

was unrestricted but the extra volume was recorded.

Subjects 3,4,5 and 6 received supplements of calcium

gluconate during the last period (period 4). The calcium

content of the calcium gluconate tablets (10 grain tablet,

United Pharmaceutical Co.) was analyzed using the same

method as for the diet. Sixteen tablets were weighed and

four tablets were consumed during each meal time. The

amount of daily calcium supplement was calculated from

the weight of these tablets and the analyzed value for

calcium content.

Sample collection and analysis

Urine:

Daily urine was collected and stored in the re-

frigerator without preservative. Urine weight, pH, spe-

cific gravity and osmolarityl6 were determined after each

daily collection was completed. Rapid screening tests1 7

were done for protein, glucose, and ketone bodies. De-

terminations for calcium, phosphorus and creatinine were

made on 24-hour collections. Aliquots of daily urine

samples collected for three days were combined and deter-
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minations of the concentration of sodium, potassium,

magnesium, nitrogen, and hydroxyproline were performed

on these pooled samples. Creatinine was measured by an

automated adaptation of alkaline picrate method (187)

and hydroxyproline by a slightly modified method of

Prockop and Udenfriend (188). Other methods of analyses

were the same as those used for the wet-ashed aliquots

of the diet.

Feces:

Fecal collection of first three days was not analyzed.

During the remainder of the period, the feces were col-

lected either daily (during 47Calcium study) or in period

of 2 to 6 days. Times of defecation and fecal weights

were recorded. Daily or pooled samples were well homo-

genized with deionized water using a Gifford-Wood-Eppen-

bach Colloid Mill or polytron and aliquots frozen for

further analysis. Total nitrogen, calcium, potassium,

sodium, magnesium were analyzed using the same methods

as for the diet.

Sweats

Samples for measurement of sweat losses were collected

by two methods. One represented the normal loss for am-

bulatory subjects while the other method measured the

loss after strenous exercise. The method developed by

Sirbu et al. (189) was used for samples collected between

day 8 to 14 of each period. On the last day of each
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period, sweat was collected after a short period of

strenous exercise on a bicycle ergometer following the

method described by Costa et al. (51). Change of room

temperature was compensated by slight change in work

load in order to collect roughly the same amount of

sweat. All samples were analyzed for sodium, potassium,

calcium, magnesium and nitrogen content by the same

methods used for urine, feces and diets.

Blood:

Fasting venous blood samples were taken by veni-

puncture before breakfast on day 8 and at the end of each

period. Creatinine, calcium, magnesium and phosphorus

were analyzed without prior digestion by the same methods

used for urine, feces or diet. Standard automated assays

(190) were used for urea nitrogen and glucose. Alkaline

phosphatase was determined byat!Automated method adapted

from that of Bessey et al. (191). All constituents were

analyzed on blood samples obtained at the end of each

period but only calcium, phosphorus and alkaline phos-

phatase were determined on samples of day 8.

47Calcium studies

4 7 Calcium chloride, containing less than l% 4 Scalcium,

was purchased from Amershan/Searl Corporation. An intra-

venous injection study was done during the second period

and an oral ingestion study was performed during the third

period.
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The solution for injection was prepared by diluting

the radioactive calcium chloride solution with pyrogen-

free water and autoclaving. The solution containing

approximately 1,lci radiocalcium was injected intravenously

one :to two hours after breakfast on day 7 of period 2.

The radiocalcium solution was injected directly into

infusion tubing while normal saline was flowing into the

median cubital vein and then flushed with an additional

30-50 ml saline. The difference in the weight of the

syringe before and after the injection was used to cal-

culater the precise amount of radioactivity injected.

Urine and feces were then collected daily for seven days

for measurement of radioactivity.

The 47calcium solution for oral ingestion was pre-

pared by diluting the purchased solution with distilled

water. From day 5-to612 of the third period the subjects

ingested equal amounts of radiocalcium solution (5.0 ml)

four times a day at meal time. The cup which contained

the radiocalcium was rinsed several times with drinking

water and these solutions were also consumed. The dilu-

tion of radiocalcium solution was calculated so that

the amount of radioactivity ingested was about 0.5, ci

per day on the fourth day (i.e. day 9 of third period) of

the ingestion period. Urine and feces were collected

for a total of 14 days.

47Calcium was counted in a well-type sodium iodide
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scintillation counter with pulse height spectrometer

analysis (model 410A Auto-Gamma Spectrometer, Packard

Instrument Co.). Gamma emission of 47scandium, the

daughter element of 47calcium, was excluded by the

discriminator at a base level of about 400 kevy. All

samples were counted in the same kind of counting tube

and counted with the same geometric conditions. Because

of adherence of radiocalcium to the wall of the counting

tube which could change the geometry of the counting

condition and give higher counts, non-radioactive (cold)

calcium chloride was added to the samples of the test

solution for injection or ingestion in order to minimize

this effect. Since cold calcium was already present in

the urine and fecal samples, calcium chloride was not

added to these samples. All counts were then adjusted to

zero time.

Because of the very low level of radioactivity in

the urine and feces they were not counted directly.

Urine was first acidified and heated. Oxalic acid was

added and the solution then neutralized to pH 5 with

concentrated ammonium hydroxide. The precipitate was

dissolved in concentrated hydrochloric acid. This

solution was used for measurement of radioactivity and

calcium content. The feces were also acidified and ho-

mogenized. A volume of acetone equal to twice the fecal

homogenate was added to facilitate filtration and the
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entire slurry was filtered. Calcium was then precipitated

from the filtrate by the same method used for the urine.

The slurry precipitate was transfered to the counting

18
tube for radioactivity determination8 . After radio-

activity was determined the slurry was dissolved in

concentrated hydrochloric acid and filtered. Calcium

content was then determined. During the oral 47calcium

study, slurry precipitate was dissolved in concentrated

hydrochloric acid. The supernatant solutionobtained

after centrifugation was transferred to the counting tube

for counting and later for determination of calcium.

From the specific activity and the amount of calcium in

the daily urine and feces, the amount of radioactivity

in the daily urine and feces was calculated. The de-

tailed procedures of preparation of urinary and fecal

samples for radioactivity determination can be found in

Appendix 1 and 2.

The model and theory used for calculation of quan-

tification of calcium metabolism was based on that of

Aubert et al. (17) and Bronner (5). The definition and

notation of these rate processes were similar to those

of Aubert et al. (17). Table 10 lists the definition

of these notations.

Endogenous fecal calcium was calculated from the

following formula for the intravenous 47calcium study.

Vef =- X Vu ------- Equation 1
ef 



Table 10 Notation and Definition

Definition

V Rate process of calcium metabolism, in mg/day

V
i

Calcium ingested

Va Ingested calcium that is absorbed(Ca absorbed)

Vd Calcium secreted from the various digestive
juices(Digestive juice calcium)

V a Calctim absorbed from both ingested and

digestive juice calcium

Vef Endogenous fecal calcium

V Calcium loss in sweat

V
F

Total fecal calcium
Vu Urinary calcium

V + Calcium that enters the skeleton by a unidi-rec-

itional process

V _ Calcium that leaves the skeleton by a unidirec-

tional process

VT Calcium turnover, i.e. calcium Most from poolby

u V VefV+ VT Vu+Vef+V§+Vo+

R Rate process of radiocalcium, in cpm or % dose

per day or other equivalent unit

Rinj Radiocalcium injected
The subscripts under R has the similar meaning

as that under V

S.A. Specific activity of radiocalcium in cpm/gm cal-

cium or % dose/gm calcium

S.A.ecf Specific activity of radiocalcium in extracellular

fluid

The subscripts under S.A. has the similar meaning

as that under V

P Miscible calcium pool size

A Calcium balance

a Fractional absorption rate of ingested calcium
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The fractional absorption rate and digestive juice calcium

was then defined ass

= -V---------Equation 2

V i

Vef
Vd = ------------Equation 3.

1-c

The logarithm of the specific activity of radio-

calcium in the urine was plotted against the time corre-

sponding to the midpoints of the collection periods

(Figure 2). The curve of disappearance of radioactivity

in extracellular fluid is supposed to be linear between

24 to 144 hours after injection (5). The method of least

squares was used to estimate the regression line, slope

and the intercept by extrapolating the linear portion of

the curve to zero time. The miscible pool was then cal-

culated from the equations

R.
S.A.ecf n------Equation 4

P

where S.A.e represents specific activity of extracellular·SA.ecf

fluid at zero time calculated from the extrapolating in-

tercept at zero time, and RinJ was the injected radio-

activity.

The slope m of regression line gives the turnover

rate which is expressed as pool replaced per day, i.e.

m = VT / P . Because we assume that no labelled calcium

returned to the pool from the bone and that the radiocal-
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cium in the pool disappeared only through the urine, feces,

sweat and entering into bone, the rate of calcium entering

bone can be calculated by the equation:

Vo+ = VT V --------Equation 5

Since the calcium p6ll is assumed to be constant, the

calcium balance can be accounted for by the amount of

calcium entering or leaving bone. The rate of calcium

leaving bone is then calculated from the equations

Vo_ = Vo+ + 4 --------------Equation 6

A technic of oral administration of radiocalcium

similar to the one used in this study has not been re-

ported previously in the literature. We adopted two

methods for calculation of fractional absorption rate

for our oral 47calcium study. The assumption of Blau

et al. (24) for calculation of total digestive juice

calcium was used, although their formula was used for

an intravenous radiocalcium study. The specific acti-

vity for urine on 5-7th day and for feces on the 6-8th

day after starting the intake of radiocalcium was rather

stabilized. The average specific activity of these

intervals was used for calculation in the following

formula:

R - S.A.F x V
V. --- .---------Equation 7d S.A. - S.A.u

From the digestive juice calcium, endogenous fecal

calcium and fractional absorption rate could be obtained
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by the same definition used before.

Another method used by Aubert et al. (17) for cal-

culation of endogenous fecal calcium after a single dose

of radioactive calcium could be applied to our study,

The endogenous fecal calcium was calculated by the

following equation:

Vu x (Ri x VF - Vi x RF) ---Equation 8
Vef =

Ri x Vu - Ru x Vi

The fractional absorption rate and the digestive juice

calcium were then calculated as before.

The assumption and derivation of equation 1, 7 and

8 can be found in Appendix 3.
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RESULTS

General

All the subjects remained healthy throughout the

entire experiment except for subject 6 who had a mild

cold during the fourth period (medium-protein diet plus

calcium supplementation) and subject 3 who developed a

small canker on the oral mucosa for a few days during the

third period (high-protein diet period). There were no

serious complaints throughout the experiment except that

one subject complained of headaches and backaches occa-

sionally and another subject complained of soreness of

the tongue.

All the subject were able to consume all of their

diets, although some complained that the protein-free

formula diet was hard to eat. Every subject except

subject 4 maintained his body weight within * 1.5 kg

of his initial weight on admission. Subject 4 gained

weight amounting to a maximum of 2.7 kg. This gain may

possibly have been compensatory for a weight loss he

experienced a few days before admission. All subjects

engaged in their daily activity throughout the experiment

without any problem.

There was no serious problems with bowel movement.

Four subjects had occasional loose stools during various

periods. The bulk of feces was noted to be much less and

the consistency harder in every subject during the high-
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protein diet period. However, there was no constipation.

The weight of the urine ranged between 1600 and 2800

gm per day and there was no significant difference between

periods. Specific gravity was between 1.003 and 1.018

and was directly related to protein intake. Urinary pH

values tended to decrease as dietary protein increased;

however, high calcium supplements were associated with

more alkaline urine than during the period on the same

diet without the calcium supplement. Osmolarity of the

urine as well as the total excreted solute was increased

during the higher protein intake periods. The mean total

solute excreted during the period of high-protein intake

was more than twice that during the protein-free diet

period. There was no significant change in total solute

excreted for subjects 3 and 4 when the calcium supplement

was given; however, total solute excretion decreased

greatly for subjects 5 and 6 when the calcium supplement

was administered (Table 11).

The rapid screening test did not reveal protein or

ketone bodies in the urine of any subject throughout the

experiment. A positive glucose test was detected almost

every day on the urine of subject 6 during periods 1, 2

and 3. The glucose became negative during the last period

when the supplement of' 900 mg calcium was given. A

slightly positive urinary glucose test was also noted in

subject 1 about half of the time during the high-protein
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Table 11 Weight, Specific Gravity, Solutes and pH
of Daily Urinea

Subject Diet Period Urine Specific Solutes
Order Weight Gravity Osmolarity Total pH

2
3,
4

gi/day
2101
2001
1747
1949

1.007
1.010
1.012
1.016

mOsm./L
278
362
427
643

mOsm./day
680
711
682
1221

6.58
6.58
6.47
6.35

2 0.9N
12 Nb
12N
24N

3 0.9N
12N
24N
12N+Ca

4 0.9N
12N
24N
12NtCa

5 0.9N
12N
24N .
12NtCa

6 0.9N
i2N
24N
12N1+Ca

Mean 0.9N
12N

24N
litN+Ca

1 1824
3 1777
4 1707
2 2040

1 1904
2 1831
3 1876
4 1605

3 2114
2 2489
1 2787
4 2155

3 2452
1 2258
2 2437
4 2128

2 2059
1 1990
3 2183
4 1984

2076
2057
2 1 4 2

2213
1968c

IAverage of daily analysis but
of each period were excluded.

t the result of first three days

bDiet'was not changed between periods 3 and 4 for subject 1
and 2.

CMean of subjects 3,4,5 and 6

1 O.9N
12Nb
12 Nb
24N -

1.007
1.011
1.011
1.011

1.007
1.007
1.013
1.010

1.006
1.006
1.008
1.007

1.006
1.007
1.009
1.008

1.006
1.008
1.010
1.008

1.007
1.008
1.007
1.010
1 .0 0 8 c

270
385
395
500

250

577
404

220
273
386
286

195
313
454
278

245
378
427
323

243
343
328
498
323"

484
669
639
1022

473
632
1052
631

74357
676
1066
619

485
695
1077
571

499
738
966
624i

496
687
685
1069c611

6.46
6.26
6.22
6.19

6.55
6.36
6.11
6.57

6.69
6.48
6.41
6.73

6.70
6.47
6.39
6.68

6.58
6.38
6.48
6.71

6.59
6. 42
6.4 2

6.32
6.67

A--- . . . _ ..a
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diet period but not during the other periods.

Calcium metabolism

Even on the same dietary regimen there was wide va-

ration in urinary calcium excretion between individuals.

A magnitude of difference as great as 8 times was noted

between 2 subjects during the same dietary period (Table

12). The daily variation for the same individual was also

fairly large. Figure la-f show the dramatic and rapid

changes during the first few days of each new period.

The daily amount fluctuated randomly during most of the

periods. There was a tendency towards a gradual decrease

in urinary calcium excretion during the course of some

dietary periods. This was especially true during period

3 and 4 when the diet remained the same for 30 days for

subject 1 (Figure la ). However, there were also certain

periods in which the daily urinary calcium excretion

increased gradually (Figure la period 2).

Every subject excreted more calcium in the urine,

regardless of the order of periods, when the dietary pro-

tein intake was increased even though the calcium intake

was low. They excreted an average of about 100 mg calcium

in the urine per day during the medium-protein diet period.

The amount was decreased about 50 mg when the protein-

free diet was fed and increased to more than 160 mg per

day during the high-protein period (Table 12). During

the high-protein period, in all but subject 3, the average
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Table 12 Calcium Intake, Excretion, and Balance

Period Calcium Urinary Fecal Sweat Calcium
Subject Diet ab I cak de

Order Intakea Calcium c Calcium Calcium Balance

_ _~~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ -_ _

1 0.9N 2
12N 3
12Ne 4
24N 1

2 0.9N 1
12N 3
H2N 4
24N 2

3 0.9N 1
12N 2
24N
i2N+Ca 4

4 0.9N 3
12N 2

14N 1.
12N+Ca 4

5 0.9N 3
12N 1
24N 2
12N+Ca 4

6 o.9N 2
12N 1
24N 3
12N+Ca 4

Mean
f 0.9N

12N

24N

12N+Ca

101
107
107
88

100
107
107
87

98
105
85

1002

98
105
86

1003

101
107
88

1005
101
107
88

1066

100

106

87

1004

mean f S.D.
86 22
253 15
208 14
258 14

38 7
65 10
55 8

134 22

10 3
33 5
65 14
62 15

33 10
59 13
96 12
163 13

58 19
65 17
132 15
211 20

83 10
116 10
282 21
205 26

mean±S.D
51 30

99 80

(68 3 4 )g

161 88

160 6 9g

mg/day

142
131
137
185

174
139
157
147

198
162
130
907

194
125
123
950 ?

144
114
77

766

184
127
119
723

mean*S.D.
174 25

133

(134

128

799

16

25)h

37

9 6 h

17
19
19
36

17
21
22
5

14
10
17
15

11
11
9
12

15
14
15
13

6
16
17
16

mean±S.D.
13 4

15

(13

17

14

4

3 )g
11

2g

-144
-296
-257
-391

-129
-118
-127
-199

-124
-100
-127
+ 18

-140
- 90
-142
-123 ?

-116
- 86
-138
+ 15

-172
-152
-330
+ 62

mean S.D.
-138 20
(-136 22)

-140 80
(-109 27)1
(-113 35)

-222 114 
(-187 8 6 A
+ 32 26

aBased on the composite diet samples plus individual calorie adjustment

bMean and S.D. of daily analysis but the results of first 3 days excluded

CAverage of samples collected between day 4-15 of each period

dsweat collected between day 8-14 of each period

eNo dietary change between period 3 and 4 for subject 1 and 2

fMean and S.D. of individual average of 6 subjects or otherwise specified

gMean and S.D. of individual average of subject 3,4,5 and 6

h t t 3,5 and 6 ( subject 4 was not

included because there was possible error on recording and gave high fecal

calcium during period 4)

iMean and S.D. of individual average of subjects 2,3,4,5, and 6
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Figure la-f

Urinary Excretion of Calcium and Nitrogen
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urinary calcium excretion was twice the amount of calcium

ingested. The effect was even more pronounced in subject

6 who excreted 3e3 times the amount of calcium ingested.

Although subject 3 did not excrete more calcium than he

ingested during the high protein diet period, his ex-

cretion during this period was 6.5 times higher than

during the protein-free diet period (Table 12).

The calcium supplement also increased the urinary

calcium considerably. The additional intake of 900 mg

of calcium daily with a medium-protein diet resulted in

an average of 90 mg per day increase in daily urinary

calcium excretion (Table 12).

In contrast to the urinary excretion, the sweat

losses of calcium were not influenced by the dietary

protein and calcium levels. The average daily loss was

15 mg (range 5-36 mg). The amount was about ll%, 15%,

25% and 9% of the amount in the urine during the high-

protein, medium-protein, protein-free and medium-protein

plus calcium supplement periods, respectively. The amount

excreted in sweat for suject 3 was even greater than the

amount in the urine during the protein-free diet period.

The study of sweat collected after strenous exercise

revealed a large loss during this short time period, an

average of 25 mg calcium loss in a 40-minute interval

(Table 13). The amount of calcium lost through sweat

and the calcium concentration (i.e. amount of calcium
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Table 13 Calcium Losses during Strenous Exercisea

Period
Order

Weight
Loss

Calcium
Loss

Calcium Conoen- b
trAtioon in Sweat

gm/interval mg/interval

1 0.9N
12N
12 N
24N

2 0.9N
12N
12 N
24N

2

1

1
3
4
2

3 0.9N 1
12N 2
24N 3
12N+Ca 4

4 0.9N 3
12N 2
24N 1
12N+Ca 4

5 0.9N 3
12N 1
24N 2
12N+Ca 4

6 0.9N
12N
24N
12N+Ca

2
1
3
4

aStudy at end of each

bCalcium loss divided

CDiet was not changed

period

by body

between

weight loss

periods 3 and 4

Subject

220
260
310
280

19
38
32
34

mg/kg

86
146
103
121

23

27
19

68

113
61

13
27
29
13

45
117
107
46

34o

240
310

290
230
270
280

270
200

180

340
320
320
350

270
250
290
280

18
11

15

67
55

83

29
42
11
17

85
131
34
49

15
42
24
27

56
168
83
96

I_ I III

W .
__ _ 
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divided by body weight loss) were not related to the

protein and calcium intake or urniary calcium excretion.

Fecal calcium decreased significantly as protein

intake increased from 0.9 to 12 gm nitrogen per day, but

there was no further decrease as protein intake increased

to 24 gm nitrogen per day. The decrease in fecal calcium

did not parallel the increase in urinary calciums(Table 12).

The calcium balance calculated from the average

value for each period is shown in Table 12. All but

subject 1 showed the same trend, that is, they lost the

least amount of calcium during the medium'-;protein diet

period. There was no substantial difference in calcium

balance between protein-free and high-protein diets

periods for subjects 2,3 and 4. The negative balance

during high-protein diet period was almost twice that of

protein-free diet period for subject 6. Subject 1, however,

had the least negative balance during the protein-free

diet period. This was a result of the sharp increase in

urinary calcium during the periods of medium- and high-

protein intake. High calcium supplements reversed the

negative balances to positive balances, but subjects 3,

5 and 6 had an average of only 32 mg per day positive

balance after a long period of negative balance (an average

of 150 mg calcium loss per day for 45 days). V

The level of serum total calcium and alkaline phos-

phatase was quite steady throughout the whole experiment
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regardless of protein and calcium intake (Table 14).

Individual variation was smaller for serum calcium than

that for alkaline phosphatase, No correlation was found

between either calcium or alkaline phosphatase and the

individual excretion of calcium in urine, feces or sweat.

There was marked individual variation in urinary

hydroxyproline excretion (Table 15). On the protein-

free diet the daily amount excreted was 21.0 to 80.2 mg

per day (average 46.2 mg). The medium- and high-protein

diets increased the daily excretion to 39.8 to 111.8 mg

(average 66.5 mg) and 63.3 to 142.7 mg (average 98.3 mg),

respectively. However, the medium-protein diet provided

0.73 gm and the high-protein diet provided 1.36 gm hydroxy-

proline daily. Calcium supplementation decreased the

urinary hydroxyproline significantly for subjects 3,.4,

5 and 6 when compared with the period which had the same

diet without the calcium supplement. However, the same

kind of decrease was also found in subjects 1 and 2 during

period 4 although these subjects did not receive calcium

supplements.

Creatinine clearance rate is a convenient and fairly

good method to evaluate the glomerular filtration rate.

Creatinine clearance rates calculatedc'from daily creatinine

excretion and plasma creatinine level are shown in Table

16. There was a wide variation in creatinine clearance

rate between individuals. The average creatinine clearance
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Table 14 Some Fasting Blood Constituents

Sub- Or- Alk. C±ea- ~ Urea Glu.Sub- Diet Or- Calcium Phosphorus Mg.Ae
ject der P-ase tinine N.

( mg % )(IU %)( mg% )
b

1 ___b
0.9N 2

12NC 3
12Nc 4
24N 1

2 ---
0.9N 1

12NC 3
12NC 4
24N 2

3 -
0.9N 1
12N 2
24N 3
12N+Ca 4

4 ---
0.9N 3
12N 2
24N 1
12N+Ca 4

0.9N 3
12N 1
24N 2
12+Ca 4

6 ---
O.9N 2

12N 1
24N 3
12N+Ca 4

9.6 4.1 2.0
9.7 9.9 4.2 3.9 1.9
9.3 10.1 4.3 4.0 2.2
9.4 10.2 4.2 4.6 2.1
9.7 9.8 4.2 3.8 2.2

9.4 5.1 2.2
9.1 9.0 4.9 4.9 2.1
9.7 9.1 5.3 4.9 2.1
9.4 9.0 5.0 5.7 2.2
9.9 9.4 5.4 5.0 2.3

9.6 4.6 2.0
9.6 9.3 4.3 3.8 2.1
9.6 9.9 4.1 4.2 2.2
9.2 9.7 4.2 3.9 2.1
9.6 9.0 4.3 4.3 2.3

9.0 4.3 1.9
9.0 9.6 4.6 4.3 1.8
9.8 9.7 4.8 4.7 2.0
9.7 9.5 4.4 4.7 1.9
9.2 9.5 4.9 4.3 1.8

9.3 3.9 1.9
9.8 9.5 4.2 4.1 1.9
9.8 9.4 4.2 4.0 2.1
9.7 9.7 4.0 4.0 2.2
9.0 9.5 3.9 3.9 1.9

9.1 5.5 1.8
9.5 9.5 5.3 .3 1.9
9.1 9.2 4.7 5.2 1.9
8.8 9.2 5.2 .5 1.8
9.1 9.2 5.1 4.9 2.0

34 1.0 15.5 94
36 37 1.1 . 5.0 82
34 36 1.2 13.5 90
37 43 1.2 13.0 85
40 36 1.3 19.5 84

25 1.0 15.0 102
27 25 1.1 4.0 98
27 29 1.1 10.5 92
28 32 1.0 12.0 86
22 25 1.1 17.5 96

20 0.9 19.0 104
28 28 1. 4.5 96
22 24 1.4 14.5 95
23 26 1.3 24.5 92
28 30 1.2 15.5 94

14 1.1 19.0 90
15- 17 1.3 5.0 86
15 15 1.4 13.0 94
16 14 1.4 19.5 84
16 20 1.4 12.5 90

31 1.0 16.0 100
43 47 1.2 4.5 78
-- 33 1.3 11.5 88
34 34 1.1 19.0 98
39 41 1.2 11.0 86

33 1.1 15.0 104
37 36 1.4 5.0 92
35 33 1.3 12.5 84
27 30 1.3 16.0 82
36 37 1.3 12.0 90

aResults for magnesium(Mg.), creatinine, urea N,glucose(Glu.)
from fasting blood samples at the end of each period, results
for calcium, phosphorus and alkaline phosphatase(Alk. P-ase)
from samples at day 8 and at the end of each period.

bFast'ing blood sample of first day, diets before admission was
not controlled.

c Diet was not changed between periods 3 and 4.
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Table 15 Urinary Hydroxyprollne Excretiona

Subject Diet Period Day of Period
Order 1- 4-b 6-9 10-12 12-15 ean

1 0.9N
12Nb
12N
24N

2 0.9N
12N

24N

3 0.9N
12N
24N
12N+Ca

4 0.9N
12N
24N
12N+Ca

5 ..0.9N
12N
24N
12N+Ca

2
3
4
1

107.1
103.6
153.0

1 42.9
3 73.4
4 60.3
2 88.8

1 18.3
2 48.5
3 85.6
4 38.0

3 27.5
2 43.3
1 59.0
4 35.0

3 56.0
1 55.1
2 98.3
4 50.7

80.4
110.1
90.5
145.5

41.3
73.4
58.1
90.2

17.4

48.5

22.7
35.4
64.9
36.7

57.7
53.5
90.5
59. o

mg/day .
76.7 81.2
111.4 120.6
100.9 113.7
138.0 142.2

42.0
65.5
62.9
96.4

23,6
48.9
78.7
42.0

25.6
37.1
64.9
35.1

45.2
59.4
95.7
55.1

43.3
68.8
70.8

108.2

22.3
43.3
73.4
44.6

23.6
41.6
61.0
35.4

45.2
64.9
92.4
59.0

82.6
108.6
95.7
13218

41.3
69.5
62.7
90.0

23.6
4: 7.3
80.0
50.7

26.2
41.6
66.9
43.7

47.6*
61.2
98.3
59.0

meantS.D.
80.2 2.5

111.8 5.3
100.9 8.6
142.3 7.6

42.2
70.1
63.0
94.9

21.0
46.8
82.8
44.8

25.1
39.8
63.3
37.2

50°3
58.7
95.0
56.6

0.9
3.3
4.8
8.0

3.0
2.3
8.7
5.1

1.9
3.4
3.2
3.7

6.1
4.7
3.5
3.7

6. 0.9N
12N
24N
12N+Ca

Meanc 0.9N
12N

2 65.5
1 62.9
3 120.5
4 66.5

54.1
68.8

111.8
61.2

53.1 61.0
79.4 77.0
106.6 103.2

58.1 59.0

58.1
69.9*
114.1
64.9

58.4
71.6

111.3
61.9

46.2
66.5
54.2
98.3
50.1

24N
12N+Ca

5.1
6.6
6.8
3.7

22.0
25.5
14.0d
26.8
11.2

aFrom 3-day pooled urine samples except 2 samples which were
2-day pooled urine( marked with *). Hydroxyproline 'content
in diet: 0.9N diet, free of hydroxyproline, 12N diet, 0.73
gm/day and 24N diet, 1.36 gm/day

bDiet was not changed between period 3 & 4 for subjects 1 & 2

CMean and S.D. of individual average of 6 subjects

d of ' subjects 3,4,5 & 6.
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Table 16 Urinary Creatinine, Creatinine Clearance Rate

and Calcium Excreation per Unit Volume of Glo-

merular Filtrate

Sub- Diet Or- Creatinine (U. )a CEGF(C.
ject Diet der Excreti-on-or r mC.R. cr 1

n" li nu, mr/Trnn/rjnt m I /ml -n m IAn i -M I - I 'I mn,/1 tn ri 
glm/ U . '
mean+S.D.

).9N 2 2.01 0.06
'N 2.15 0.05
N 24 22.16 O. 06
PN 1 2.48 0.08

mgV/ r~ / u ay

24.6
26.
26.6
30.2

lUL/miI IIL/m IImLLjL/i.L mLV.V IIll

-M mG.F.
126.9 112.6 0.047
124.4 110.4 0.141
125.0 110.9 0.125
132.5 117.6 0.135

2 0.9N
12N
12N
24N

3 0.9N
12N
24N
12N+Ca

4 0.9N
12N
24N
12N+Ca

5 0.9N
12N
24N
12N+Ca

6 0.9N
12N
24N
12N

2 1.95
1 2.16
3 2.42
4 2.27

MeanC0.9N
12N

24N
12N+Ca

0.05 27.6
0.16 30.3
0.12 34.2
0.21 31.9

mean*S.D,
25,1 2.8
28.0 2.1
(28.8 2.2
31.5 2.5
(28.9 2.3

96.7
115.4
128.3
121.3

94.5
112.8
125.4
118.6

0.060
0,070
.0.152
0.116

mean*S.D. mean i S.D,
97.5 15.5 0.033 0.019

105.4 14.4 0.060 0o042
99.7 5.9 0.046 0o 0 1 7 )
121.6 15.2 0.089 0.043 d
106.0 11.5 0.103 0.036)

i 0
12
12
24

1 1.75
3 2.10
4 1.96
2 2.21

1 1.25
2 1.47
3 1.83
4 1.53

3 1.76
2 1.92
1 2.01
4 1.84

3 1.86
i 1.97
2 2.27
4 1.92

0.26
0.05
0.36
0.16

0.04
0.04
0.12
0.02

0.10
0.04
0.08
0.02

0.03

0.11
0.04

21.9
26.3
24.7
27.9

21.7
25.5
31.7
26,5

26.7
29.1
30.7
28.0

28.2
30.1
34.5
29,0

110.5
132.6
136.1
139.5

62.0
72.9
97.8
88.5

94,0
95.2
99.7
91.3

107.6
105.2
143.3
111.1

102.8
123.3
126.6
129.8

69.2
81.4

109.2
98.8

96.8
98.0

102.7
94.0

108.9
106.4
145.0
112,4

0.024
0.034
0.028
0.067

0.008
0.031
0,046
0.049

0.024
0.043
0.067
0.127

0.037
0.040
0.067
0.119

aCreatinine Clearance Rate (C.C.R.), calculated by the equations
Ucr 1

C cr X 1 , where Pcr serum creatinine level
cr

ij
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(Table 16 continued)

bCalcium Excretion per lO0ml Glomerular Filtrate (C.E.G.F.),
calculated by the equations

V
CaE = u x Pcr , where Vu daily urinary calcium ex-

cr cretion

CMean and standard deviation of the average of 6 subjects or
otherwise specified.

dMean and standard deviation of the average of subjects 3,4,
5 and 6.
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rate increased from an average of 97.5 ml/min./1.73 m2

body surface area with protein-free diet to 105.4 and

121.6 ml during medium- and high-protein diet, respec-

tively.

An analysis of the dynamics of calcium excretion

must take into account interindividual variation and

changes in glomerular filtration rate induced by va-

riable protein. This can be done by relating calcium

output to a fixed volume of glomerular filtrate (G.F.).

Calculated amount of calcium excreted per 100 ml of G.F.

are shown in Table 16. There was also remarkable in-

dividual variation. In all but one period of subject 1,

calcium excretion per 100 ml G.F. increased as the protein

intake increased. The additional intake of 900 mg calcium

daily with a medium-protein diet resulted in an average

increase of more than twice the amount excreted compared

with the period of same diet without calcium supplements.

47Calcium studies

The results of the 4 7calcium studies are shown in

Table 17 and 18. The calcualted calcium fractional ab-

sorption rates, endogenous fecal calcium, digestive juice

calcium, calcium miscible pool, rate of calcium entering

and leaving bone are shown in Table 19 and 20. Table 20

shows the results obtained by-using two different methods

of calculation for the same study. Difference can be

noted depending upon the approach used. Good agreement-
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Table 17 Results of Intravenous 47Calcium Study

4 7 ~ 47 
Calcium Urinary Calcium b Calcium 'Calcium

Subject Diet Ingested Calcium in Urine in Fecese Ratio
(Vi) (Va) (Ru) (RF) (RFRu)

( mg/day ) ( % dose )

1 0.9N 101 83 4.0 6.3 1.58

2 24N 87 1 3 7 d 9.0 d 8 .2 d 0.91d
10.0

3 12N 105 30 4.0 13.3 3.33

4 12N 105 66 7.1 8.0 1.13

5 24N 88 142 .11.4 4.8 0.42

6 0.9N 101 81 6.1 9.1 1.49

aAverage urinary calcium of day 1-6 after injection

bRecovery of radioactivity in urine of day 1-6 after injection

CRecovery of radioactivity in feces of day 2-7 after injection

dNo feces on day 7, urine of day 1-5 and feces of day 2-6 used

for calculation



Table 18 Results of Oral 47Calcium Study

Subject Diet V
i

F R Rx S S S.Ae S.A. F R IF S.A.
F

mg/day % Dose ) ( x 10
'
5 cpm/gm Ca.

1 12N 107 15.2 2.8 11.9 22.55 0.940 2.805 8.0

2 12N 107 29.7f 3.1f 4.4f 22.55 1.167 5.824 3.9

3 24N 85 40.6 3,5 5.9 28.39 1.494 9.327 3,0

4 0.9N 98 35.5 1.7 2.6 24.26 1.372 4.836 5.0

5 0.9N 101 20.5 2.7 3.4 23.89 1.189 4.175 5.7

6 24N 88 29.4 10.9 15.4 27.42 1.014 6.679 4.1

aNotation see Table 10

bRecovery of radioactivity in feces of day 2-11 after 7calcium ingestion

" ,,,, urine of day 1-10 after47caloium' ingestion

dAverage specific activity of urine of day 5-7 after 47talclum ingestion

eAverage specific activity of feces of day 6-8 after 47calci'um ingestion
urine of day 1-10 and feces of day 2-11 used for calculationfNo feces on day.'11, urine of day 1-10 and feces of day 2-11 used for calculation

0



Table 19 Kinetics Data of Calcium Metabolism a

Subject Diet Vef ' Vd m P VT Vo+ V
o
- P VT Vo+ V

o
-

mg/day % mg/day day -1 mg ( mg/day )mg/m2 ( mg/day/m2 )

1 0.9N 131 89 1190 0.241 6506 1568 1334 1478 3318 804 684 758

2 24N 125 75 500 0.199 5010 995 733 932 2689 535 394 501

3 12N 100 41 169 0.189 2724 515 372 472 1757 332 240 305

4 12N 75 52 156 0.107 4815 515 370 460 2866 307 220 274

5 24N 60 81 316 0.211 4531 956 749 887 2650 558 437 518

6 0.9N 12I 3 8 b 1 9 5 b 0.292 3842 1122 912 1084 2171 634 515 612
57 281

aCalculated from intravenous 47calcium study, notation see page 51 Table 10

bCalculated not based on fecal calcium of whole period, based on fecal calcium of

day 7-14 of period 2

H



Table 20 Endogenous Fecal Calcium, Digestive Juice Calcium

and Fractional Absorption Ratea

Subject Diet Vd e Vef

ibmg/daY c id IIe fmg/day g
1 12N 1134 2083 89 94 125 125

2 12N 381 474 68 73 122 128

3 24N 206 180 55 51 93 88

4 0.9N 557 364 70 '58 167 153

5 0.9N 668 453 81 74 127 118

6 24N 325 272 71 67 94 90

aCalculated from

bCalculated from

Calculated from

dCalculated from

ecalculated from

fCalculated from

gCalculated from

oral 47calcium study

equation 7

equation 3 using values of a(II) and Vef(II)

equation c=(Vi+Vd-VF)/(Vi+Vd), using values of Vd(I)

equation 2 using values of Vef(II)

equation Vef= Vdx(l -a/100) using values of a(I) and Vd(I)

equation 8
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was noted between results for calculated endogenous fecal

calcium and for fractional absorption rate. However, the

results for digestive juice calcium varied considerably.

The average fractional absorption rate was about 70%

during the low calcium intake periods. It ranged from

41 to 94 %. The endogenous fecal calcium was between

60 and 167 mg per day. Table 21 shows the comparison of

some calculated results from the two studies. Although

different methods were employed in the two studies, the

results demonstrate the effect of dietary protein on

the calcium absorption in the gut. With the exception of

subject 4, all showed an increase in calcium absorption

and a decrease in endogenous fecal calcium during the

higher protein intake. There was no such consistent

correlation between protein intake and digestive juice

calcium.

Semilogarithmic plots of the specific activity of

47calcium in the urine against time for the intravenous

47calcium study are shown in Figure 2a-c. The slope of

the regression line gives the turnover of calcium pool

which is expressed as a fraction of the pool replaced

per day. Daily turnover of the pool ranged between 0.109

to 0.292. The parameters of calcium metabolism calculated

from these results and from the calcium balance are showh

in Table 19. The rate of calcium entering bone ranged

from 372 mg to 1334 mg per day; and the rate of calcium



Table 21 Comparison of Fractional Absorption Rate, Endogenous Fecal

Calcium and Digestive Juice Calcium between Two Periods

Subject VPf Vd.be IT FII I II III II . II II III

A. Group that protein intake increased-

1 0.9N 12N 89 92(94, 8 9)a 131 125(125, 125) 1190 1613(2083, 1134)

3 12N 24N 41 53(51, 55) 100 91( 88, 93) 169 193( 180, 206)

6 0.9N 24N 57 69(67, 71) 121 92( 90, 94) 281 299( 272, 325)

B. Group that protein intake decreased

2 24N 12N 75 71(73, 68) 125 125(128, 122) 500 428( 474, 381)

5 24N 0.9N 81 78(74, 81) 60 123(118, 127) 316 561( 453, 668)

4b 12N 0.9N 52 64(58, 70) 75 160(153, 167) 156 461( 364, 557)

aTwo methods used for calculation of these parameters( see Table 20),-th6. value
given before the parenthesis is the average of these two values

bThe results of subject 4 during the period 2(II) by i.v. 47calcium study-were
not satisfactory

-N]



Figure 2a-c

Semilogarithmic Plots of 47Calcium Specific Activity

Verus Time for Intravenous 47Calcium study
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leaving bone, from 515 to 1568 mg per day. Good corre-

lation was found between Vo_ or Vo+ and the alkaline

phosphatase or urinary hydroxyproline excretion of pro-

tein free period as shown Table 22.

The miscible calcium pool size calculated for this

study varied from 2724 to 6506 mg. This pool size was

shown to be correlated with body size. The correlation

was slightly better with body surface (r=0.84) than with

body weight (r=0.76).

Because of the wide variation in body size, the

specific activity was corrected to body surface according

to the method of Heaney et al. (192). The corrected

specific activity plotted against time are given in Figure

3. Heaney et al. (192) combined the results of radio-

calcium studies from various laboratories and calculated

the mean and standard deviation of specific activity at

various times after injection. The dashed-line area in

Figure 3 represents the mean plus and minus one standard

deviation of normal adults obtained from those calcula-

tions.

A comparison of the curves for out study with the

reference standard of Heaney et al. (192, Figure 3) shows

that the initial specific activity is higher than the

mean but four out of six are within one standard devia-

tion. Although the subjects started with specific ac- :

tivity similar to the reference, each subject had his
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Table 22 Correlation of Rate of Calcium Entering

or Leaving the Bone to Alkaline Phospha-.

tase, Urinary Hydroxyproline Excretion

Coefficient of
Correlation

Vo+ vs Serum alkaline Phosphatase 0.82 40.05

V0o vs Serum alkaline Phosphatase 0.82 (0.05

Vo+ vs Urinary hydroxyproline of period 2 0.53 70.1

Vo_ vs Urinary hydroxyproline of period 2 0.57 :0.1

Vo+ vs Urinary hydroxyproline of protein-. 0.99 <0.001
free diet period

Vo_ vs Urinary hydroxyproline of protein- 0.99 <0.001
free diet period
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Figure 3

Corrected Semilogarithmic Plot of 47Calcium Specific

Activity Verus Time for Intravenous 47Calcium Study
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own pattern of time course for the specific activity and

none of them followed the reference standard.

The curves for subjects 3 and 4 are higher than the

reference curves. The curve of subject 3 parallels the

mean curve, but the slope of the curve for subject 4

starts to decrease on day 3. Subjects 2 and 5 have essen-

tially the same curve but the slope of these curves is

slightly steeper than the reference. The dilution of

tracer proceeded more rapidly for subjects 1 and 6 than

for subjects 2 and 5.

47Similar plots for the oral Calcium study after the

cessation of oral radiocalcium feeding are shown in Figure

4. The diets of subjects 3, 4, 5, and 6 were changed to

medium-protein diet with approximately 900 mg calcium

supplementation on day 4. The slope of the regression

line was calculated only for subjects 1 and 2 because

their diet was not changed. The daily turnover of the

calcium pool was 0.154 and 0.138 for subjects 1 and 2,

respectively. The specific activity of 47calcium in the

urine was higher for subjects 3 and 4 and lower for

subjects l and 6. In contrast to the curves in Figure 3,

the slopes of the curves for different subjects did not

vary greatly.

Nitrogen metabolism

The individual nitrogen intake, excretion and balance

data are shown in Table 23. As expected, the urinary
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Figure 4

Semilogarithmic Plot of 47Calcium Specific Activity in

Urine Verus Time for Oral 47Calcium Study after Cessation

of 47Calcium Feeding
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nitrogen was directly related to the protein intake. The

calcium supplement for the medium-protein diet decreased

the urinary nitrogen for three out of four subjects when

compared to the period on the same diet without calcium

supplementation. This difference was not significant

probably because of the effect of the previous protein

intake.

Fecal nitrogen, on the other hand, did not show a

direct relationship to the protein intake. Although the

average amount of fecal nitrogen increased as protein

increased, the individual fecal nitrogen did not show such

consistent relationship (Table 23). This result demon-

strated the remarkably high digestibility of the meat

protein used in this experiment and the ability of the

gastrointestinal tract to tolerate easily at least 24 gm

nitrogen meat protein. If we used the average fecal

nitrogen during the first three diet periods, the di-

gestibility calculated by the following equation (193).

N Intake-(Fecal N test-Fecal N )otein-free !% digestibility= - test rotein-free
N Intake

would be 98% either during the medium- or high-protein

diet period. The calcium supplement, however, increased

the fecal nitrogen in all four subjects regardless of the

order of dietary periods.

The apparent nitrogen balance defined as the differ-

ence between nitrogen intake and the excretion in urine,
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Table 23 Nitrogen Intake, excretion and Balance

Sub- Diet Or- Nitrogan Urinary b Fecal Zwet dApparenrject der Intake Nitrogen NitrogenCNitrogen Balance

gm/day

1 0.9N
12 Nf
12N
24N

2 0.89
3 12.04
4 12.04
1 23.80

mean±S.D.
3.54 0.26
9.88 0.86
9.67 0.47
23.67 1.78

1.22
1.16
1.26
1.06

o.o5g
0.14
0.17
0.27

-3.92
+0.86
+0.94
-1.20

2 0.9N
12 Nf
12N
24N

3 0.9N
12N
24N
12N+Ca

4 0.9N
12N
24N
12N+Ca

1
3
4
2

1
2
3
4

3
2
1
4

5 P.9N 3
12N 1
24N 2
12N+Ca 4

6 O.9N 2
12N 1
24N 3
12N+Ca 4

Meanh 0.9N
12N

i0.89
12.04
12.04
23.80

0.84
12.00
23.77
11.96

0.84
12.02
23.80
12.00

0.89
12.04
23.80
12.04

0.89
12.07
23.80
12.04

24N
12N+Ca

2.15
9.84
9.30
19.05

2.23
8.52

21.82
9.27

2.15
9.45

20.03
8.29

2.56
9.72
20.22
7.82

2.76
10.70
19.09
9.45

2.57
9.69

(9.60
20.65
(8.71

0.38
0.35
0.58
1.56

0.25
0.71
1.11
0.26

0.16
0.36
1.20
1.28

0.41
0.23
1.30
0.47

0.30
0.25
1.20
0.76

0.54
0.72
0.90
1.79
0.78

1.61
1.58
1.87
1.86

1.14
1.39
1.30
1.76

0.88
1.29
1.11
1.42

1.15
1.69
2.18
1.78

1.11
1.55
1.38
1.82

mean*S.D.
1.19 0.24
1.44 0.20
1.48 0.18
1.48 0.44
1.67 0.17

0.20 -3.07
0.16 +0.46
0.16 +0.71
0.09g +2.80

0.13 -2.66
0 .0 7 g +2.02
0.22 +0.43
0.24 +0.69

0.08 -2.27
0 ,0 9g +1.19
0.20 +2.46
0.16 +2.i3

0.06 -2.88
0.15 +0.48
0 07g +1.33
0.11 +2.33

0.0 g -3.03
0.13 -0.31
0.13 +3.20
0.13 +0.64

mean*S.D.
-2.97 0.50
+0.78 0.79
+0.8:5 0.99)

i

+1.50 1 67
+1.45 0.91)

aBased on analysis of composites plus individual
bMean & S.D. of 3-day-pool samples fo day 4-15
CAverage of fecal collection of day 4-15
dSweat collected during day 8-14

calorie supplement

--

I:
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(Table 23 Continued)

eBlood loss and other unmeasureable losses were not included

fNo dietary change between period 3 and 4

gData for sweat nitrogen of period 2 was too low, probably

a calculation error

hMean and standard deviation of average of 6 subjects or other-

wise specified

iMean and standard deviation of average of subjects 3,4,5 and 6
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feces, and sweat was positive for most subjects during

the medium- and high-protein diet periods except for

subjects 1 and 6. The negative balances for these two

subjects might have been the result of a high Protein

intake before the experiment. The calcium supplement

either increased or decreased the nitrogen retention as

compared to the same dietary period without added calcium

(Table 23).

Urinary creatinine excretion was also increased as

the dietary protein intake increased. There was about

25% difference (ranged 15-45%) between the high-protein

diet and the protein-free diet periods (Table 16).

However, the fasting blood creatinine was essentially the

same throughout the experiment.

Metabolism of other minerals:

The average intake, excretion and the apparent

balance of sodium, potassium, magnesium and phosphorus

are shown in Table 24, 25, 26, and 27. As might be ex-

pected there were significant negative balances for phos-

phorus and potassium during the protein-free diet period,

probably caused by breakdown of body tissues. All the

subjects were in balance during the medium-protein diet

period, and no further increase in retention of phos-

phorus was noted during high-protein diet period. The

lower urinary and fecal phosphorus during the high-protein

diet period might be partly a result of lower intake of
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Table 24 Sodium Intake, Excretion and Balance

Sub- Diet Or- Sodium Urinarg Fecal_ Sweat d Apparelt
Ject der Intake Sodium Sodium Sodium Balance

mean±S.D.
1 0.9N
12 Nf
12N
24N

2 0.9N
12Nf
12N
24N

2 3.46
3 3.05

3.05
1 3.11

1 3.46

2 3.11

3 0.9N 1 3.46
12N 2 3.05
24N 3 3.11
12N+Ca 4 3.05

4 0.9N 3 3.46
12N 2 3.05
24N 1 3.11
12N+Ca 4 3.05

5 0.9N 3 3.46
12N 1 3.05
24N 2 3.11
12N+Ca 4 3.05

3.42
2.98
2.80
3.14

.:85
98

2.59
2.85

3.80
2.69
3.18
2.67

3.52
2.79
3.34
2.85

3.48
2.93
3.03
2.31

0.38
0.30
0.21
0.38

0.53
0.06
0.17
0.23

0 .46
0.38
0.23
0.17

0.47
0.52
0.26
0.24

0.51
0.16
0.23
0.41

gm/day

0.04
0.01
0.02
0.01

0.07
0.04
0.07
0.06

0.05
0.03
0.01
0.01

0.07
0.07
0.02
0.05

0.05
0.05
0.03
0.02

6 0.9N 2
12N 1
24N 3
12N+Ca 4

Meanh0.9N
12N

3.46
3.05
3.11
3.05

3.39
3.19
2.86
2.54

3.58
2.93
(2.90
3.07
(2.60

24N
12N+Ca

0.34
0.42
0.19
0.17

0.20
0.17
0.22
0.19
0.23

0.09
0.08
0.03

mean*S.D.
0.06 0.02
0.05 0.03
0.06 0.02
0.03 0.02
0.03 0.02

0.04
0.21
0.14
0.15

mean*S.D.
0.12 0.08
0.13 0.08
0.14 0.09
0.11 0.04
0.14 0.03

-0.06
-0.43
+0.08
+0.32

meaniS.D.
-0.30 0.23
-0.06 0.25 i
-0.05 0.32)
-0.09 0.19 i
+0.29 0.21)

0.07
0.09
0.10
0.11

0.20
0.195

0.04

0.08
0.04
0.09
0.12

0.10
0.08
0.11
0.12

0.23
0.23
0.17
0.18

-0.07
-0.03
+0.13
-0.15

-0.66
-0.12
+0.20
+0.16

-0.47
+0.29
-0.17
+0.25

-0.23
+0.11
-0.36
+0.03

-0.30
-0.16
-0.12
+0.54

aBased on analysis of composites
b,c,d,e,f,h,i, Same as footnotes of Table 23
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Table 25 Potassium Intake, Excretion and Balance

Sub- Diet Or- Intakea Urinary bFecal cSweat dApparenject der Potassium Potassium Potassium Balance
· ., M.. 

1 0.9N
12N

24N

2 3.11
3 3.18
4 3.18
1 2.73

meaniS.D.
3.04
2.49
2.27
2.20

0.15
0.14
0.35
0.18

2 0.9N 1 3.11
12Nf 3 3.18
12N 4 3.18
24N 2 2.73

3 ,0,9N 1 3.11
12N 2 3.18
24N 2.73
12N+Ca 3.18

4 0.9N 3 3.11
12N 2 3.18
24N 1 2.-73
12N+Ca 4 3.18

5 0.9N 3 3.11
12N 1 3.18
24N 2 2.73
12N+Ca 4 3.18

6 0.9N 2
12N 1
24N 3
12N+Ca 4

Meanho.9N
12N

3.11
3.18
2.73
3.11

2.55
2.21
1.97
1.70

2.59
1.92
2.01
2.10

2.84
2.28
1.74
2.25

2.85
1.92
1.46
2.07

2.68
2.30
1.46
2.10

2.76
2.18
(2.11
1.83

(2.11
24N
12N+Ca

0.19
0.17
o.06
0.19

0.54
0.13
0.09
0.20

0.29
0.14
0.26
0.18

0.41
0.15
0.17
0.15

0.67
0.45
0.59
0.20

0.60
0.60
0.28
0.43

0.43
0.46
0.16
0.46

0.52
0.58
0.33
0o.59

0.18 0.68
0.27 0.71
0.17 0.51
0.18 0.64

mean+S.D.
0.19 0.54 0.14
0.25 0.52 0.14
0.21 0.59 0.10
0.26 0.27 0.14
0.10 0.53 0.10

0.12
0.17
0.18
0.04

0.09
0.04
0.16
0.17

0.07
0.08
0.09
0.08

0.07
0.08
0.07
0.08

0.01
0.11
0.08
0.08

mean*S.D.
0.07 0.04
0.10 0.04
0.08 0.03
0.09 0.04
0.10 0.05

-0.23
+0.35
+0.44
+0.79

-0.17
+0.62
+0.28
+0.48

-0.23
+0.36
+0.74
+0.39

-0.33
+0.60
+0.45
+0.44

-0.26
+0.06
+0.68
+0.36

mean*S.D.
-0.26 0.06
+0.38 0.21
+0.41 0.26)
+0.53 0.23 i
+0.42 0.05)

aBased on analysis
bc,d,etfh, iSame

of composites

as footnotes of Table 23

gm/day

0.33
0.31
0.34
0.15

0.07
0.09
0.09
0.12

-0.33
+0.29
+0.48
+0.26
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Table 26 Magnesium Intake, Excretion and Balance

Sub Diet Or- Intakea Urinary b Feal Sweat dApparen
ject der Maggnesi Magnesium Magnesium Balance

mg/day

1 0.9N
12Nf
12Nx

24N

2 0.9N
12Nf
12N
24N

3 0.9N 1
12N 2
24N 3
12N+Ca 4

4 0.9N 3
12N 2
24N 1
12N+Ca 4

5 0.9N
12N
24N
12N

2 664
649

4 649
1 604

1 664
3 649
4 64
2 604

664
649
604
649

664
649
604
649

3 664
1 649
2 604
4 649

meaniS.D.
163 10
173 20

197 6
244 49

166 20
162 20
151 8
177 .17

123
131
141
125

115
128
170
134

132
126
118
113

8
25
14
9

5
30
1
5

18
6
14
15

458

474
336

428
433
499
440

535
Y42
584
536

535
539
448
524

596
468
657?
505

3
2
3
4

4
3
3
1

3
1
3
2

2
1
3
2

2
5
3
2

+40
+26
-25
+20

+66
+51
--4
-14

+3
-25
-24
-14

+12
-19
-17
-11

-66
+50
-174?
+29

6 0.9N 2
12N 1
24N 3
12N+Ca 4

Meanh0.9N
12N

24N
12N+Ca

664
649
604
649

137
166
141
142

139
148
(138
165
(129

12
12
23
15

21
22
19
44
12

538
484
473
496

meaniS. D.
615 61
86 66
508 38
436 5 9g
513 18

1
5
2
2

meanS. D.
3 1
3 2
3 2
3 1
2 0

-12
-6
-12
+9

mean*S.D.
+ 7 45
+13 34 .
0 34A

-9 17 i
+ 3 20)

aBased on analysis of composites

b'c'de'f'hisame as footnotes of Table 23

gMean and standard deviation of average of subjects 1,2,3,4
and 6( subject 3, excluded)
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Table 27 Phosphorus Intake, Excretion and Balance

Sub- Diet Or- intake Urinary Fecal Apparenl
ject der Phosphorus Phosphorus Balance

1 0.9N
12Nf
12N
24N

2 2.03
3 2.01
4 2.01
1 1.67

mean*S.D.
1.64 0.15
1.54 0.10
1.54 0.19
1.47 0.07

2 0.9N
12 Nf
12N
24N

3 0.9N
12N
24N
12N+Ca

1 2.03
3 2.01
4 2.01
2 1.67

1
2
3
4

4 0. 9N 3
12N 2
24N 1
12N+Ca 4

5 0.9N 3
12N 1
24N 2
12N+Ca 4

2.03
2.01
1.67
2.01

2.03
2.01
1.67
2.01

2.03
2.01
1.67
2.01

6 0.9N 2
12N 1
24N 3
12N+Ca 4

Mean 0.9N
12N

2.03
2.01
1.67
2.01

1.44
1.35
1.05
1.06

1.53
1.36
(1.30
1.20
(1.04

24N

0.07
0.15
0.07
0.10

0.07
0.12
0.08
0.14
0.03

0.78
0.65
0.53
0.82

meaniS.D.
0.69 0.10
0.57 0.09
0.63 0.05
0.47 0.12
0.76 0.05

-0.19
+0.01
+0.09
+0.13

mean*S.D.
-0.19 0o.o06
+0.08 0.07
+0.09 0o.8)
+0.07 0.13
+0.21 0.06)

aBased on analysis of composites

b',ctef'hisame as footnotes of Table 23

gm/day

0.50
0.45
0.42
0.38

-0.11
+0.02
+0.05
-0.18

0.27
0.07
0.07
0.15

0.67
0.47
o.59
0.33

1.58
1.42
1.34
1.19

1.45
1.20
1.10
1.01

1.46
1.28
1.12
1.06

1.63
1.37
1.19
1.02

0.10
0.07
0.17
0.05

0.22
0.04
0.12
0.03

0.11
0.10
0.11
0D.11

-0.22
+0.12
+0.08
+0.15

-0.14
+0.14
+0.05
+0.20

-0.19
+0.17
+0.15
+0.21

-0.29
+0.02
+0.16
+0.28

0.72
0.67
0.52
0.75

0.76
0.56
0.40
0.74

0.69
0.62
0.64
0.71
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phosphorus during the high-protein diet period ( Table

27). Calcium supplementation apparently influenced the

phosphorus metabolism. The dietary calcium/phosphorus

ratio was about 1/20 during the low calcium intake. ,The

ratio increased to 1/2 when 900 mg calcium per day was

supplemented during the last period. Although the

phosphorus intake was the same for the two periods a

marked decrease in urinary phosphorus ( average 0.34 gm

per day or 25% ), an increase in fecal phosphorus (0.13

gm per day or 20%) and an increase in phosphorus reten-

tion (0.2 gm per day) were noted in all subjects. Every

subject went from a negative balance for potsssium during

the protein-free diet period to a positive balance during

the medium- and high-protein diet periods. Potassium

metabolism did not seem to be affected by calcium supple-

mentation.

The effect of dietary protein level on the other

divalent mineral measured, magnesium, was quite different

from that of calcium. There was no wide individual va-

riation in urinary magnesium excretion as occured in uri-

nary calcium. The daily urinary magnesium excretion

ranged from 113 to 244 mg per day for all the periods in

all subjects. Losses in sweat were small (3 mg in average)

in comparison to the urinary excretion (150 mg per day).

There was no clear correlation between protein intake and

either urinary, fecal, sweat magnesium or magnesium balance.
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Calcium supplementation did not result in any consistent

change in magnesium excretion and balance.

Every subject had a negative sodium balance during

the protein-free diet period due to higher urinary sodium

excretion. The dietary protein in both the medium- and

high-protein diet periods tended to decrease the negative

balance or to convert it to a positive balance. During

the last period, there was an increase in sodium retention

which did not appear to be related to the added calcium

since it occurred for all subjects not just the four

receiving calcium supplementation (Table 24).



DISCUSSION

The most significant result observed in the first

three periods of this study was the change in urinary

calcium excretion. The urinary calcium increased as

protein intake increased. Dietary components other

than protein and carbohydrate were approximately equalized

and adequate vitamins and trace minerals were provided.

It is still possible but unlikely that some unknown

factor or factors, such as might exist im meat, increased

as the protein level in the diet increased. However,

this is unlikely based on other experiments performed

in our laboratory.

Previous studies in this laboratory using purified

protein formulas demonstrated a similar response to -.-

protein intake. When protein intake were varied from

protein-free to 600 gm per day, a direct relationship

between urinary calcium and protein intake was observed

in every subject regardless of the protein sources1 '2 '3

It is rather unlikely that there would be some unknown

factor or factors common to all the different source of

protein used in the formula diets which would change in

proportion to the level of protein. Moreover, using

different patterns of crystalline amino acids, Weller

(194) demonstrated that the urimary calcium increased as

the levels of total nitrogen from amino acids increased.

The changes, however, were not related to differences in

90
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the amino acid patterns.

Increase in urinary calcium excretion can result

from one or more of the following mechanisms: increase

in the filtered load of calcium in glomerular filtrate,

increase in renal tubular calcium secretion, or decrease

in renal tubular calcium reabsorption.

The plasma concentration of calcium in fasting blood

samples taken at the middle and at the end of each period

did not show any significant change related to protein

and/or calcium intake. Diurnal change in plasma calcium

has been shown to be only about ± 3% in spite of large

variations in calcium intake and urinary calcium ex-

cretion (119). Fraction of filtrable calcium in plasma

has also been shown not to be affected by the diet (57).

Therefore, the concentration of calcium in glomerular

filtrate would not be expected to vary to any great

extent. McFadyen et al. (195), however, correlated a

slight decrease in plasma calcium and filtrable calcium

levels with urinary calcium excretion. The discrepancy

between the results of McFadyen et al, and our results

possibly may be explained by the length of experiments.

They measured plasma concentration of calcium only on

the second and third day after initiation of a low

calcium diet.

The filtered load of calcium may also be modified

by a change in the glomerular filtration rate (GFR). GFR
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has been shown to be related to protein intake (see page

33-35 for rev. of literature). The rate of creatinine

clearance calculated for the present experiment was

markedly increased during the high-protein intake. Be-

cause creatine in the meat is readily converted to crea-

tinine on heating (178), the rise in creatinine clearance

rate during the high-protein diet period was partly the

result of increased exogenous. creatinine. GFR obtained

from these creatinine clearance rates could be over-

estimated for the the high-protein diet period. Even

though the GFR was overestimated during the high-protein

intake period in this experiment, 25% increase in GFR

during high-protein period (Table 16), could not account

for the more than 200% increase in urinary calcium.

Increase in GFR alone has been shown to have little

effect on sodium excretion unless the extracellular

volume is expanded (55). Although the same kind of

study for calcium has not been done, many hemodynamic

factors which affect the calcium excretion have been

shown to have no effect on GFR (see page 16 for rev.).

However, Hodgkinson and Heaton (57) correlated an increase

in urinary calcium excretion to a change in GFR. Dis-

crepancy between their study and our study may be due to

the differences in the duration of the studies. Hodgkinson

and Heaton measured GFR immediately after intake of food

whereas in our experiment sufficient time was allowed for
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equilibrium on the different diets.

When the glomerular filtration rates for the variable

protein intakes are adjusted to a fixed volume of gldo-

merular filtrate (G.F.) of 100 ml, differences in the

filtered load of calcium resulted from changes in GFR

are eliminated. Calcium excreted per 100 ml G.F. during

the higher protein intake periods are still markedly:

increased. Alteration in filtered load is not the main

mechanism responsible for calciuretic effect of high

protein intake.

Bidirectional flux of calcium has been shown to

exist in the renal tubules (54, 67, 69). Frick et al.

(67) also demonstrated in rats that the net calcium

influx into the proximal tubules occurs during micro-

perfusion with a calcium-free solution. However, they

noted no further increase in calcium concentraion in

the perfusate in the distal segments of the tubules if

the concentration of calcium reached 2.11 mEq./l. In

the present study, the urinary calcium concentration in

most subjects was more than 2.66 mEq./l, but variation

in protein intake still exerted a remarkable effect on

calcium excretion. It also affected those who had high

calcium concentration in urine. It is very unlikely

that the calciuretic effect occurs by enhancement of

tubular calcium secretion. A change in the tubular

reabsorption, therefore, is most likely the principle
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mechanism involved in the calcium excretion related to

protein intake.

There are many factors which can affect tubular

calcium reabsorption. Osmotic pressure changes induced

by urea have been shown by many investigators to affect

urinary calcium excretion (5, 54, 71 for rev.). However,

other experiments have not shown this effect (53, 196,

197). Figure la-f show that both urinary nitrogen and

calcium increased as dietary protein increased. These

two urinary components, however, were not correlated

between the subjects or even between various periods for

the same individual. Infusion of urea equivalent to

the amount produced by the high protein diet also did

not result in significant increase in urinary calcium3.

Although high protein intake has been shown to

cause increase in blood pressure in experimental hyper-

tensive rats (198), this effect was not observed in our

subjects. Extracellular space also was not increased

by protein intake (55). Therefore, a decrease in re-

absorption of calcium in the tubules caused by hemo-

dynamics factors is also high unlikely.

Correlation between urinary calcium excretion and

excretion of sodium, magnesium and other minerals has

been observed (see page 15 for rev.). This relationship

was not observed during periods of variable protein in-

take. It suggests that some other specific mechanisms
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for calcium reabsorption in tubules neither common nor

coupling to the reabsorption mechanisms of other minerals

exists. It is very possible this specific calcium re-

absorptive system can be affected greatly by variations

in protein intake but other transport systems are either

not or only slightly affected.

Katz and Epstein (182) correlated the increase in

sodium reabsorption to the increased activity of the

specific enzyme, sodium-potassium-stimulated ATPase

during the high protein intake period. Although there

was no similar study on the activity of enzymes involved

in calcium reabsorption, it is possible that a high

protein intake may inhibit activity of enzymes involved

in calcium reabsorption but have a minimum or a different

effect on the enzymes involved in the systems for other

minerals.

In contrast to the kidney, calcium excretion by

sweat glands was not affected by variations in proteinor

calcium intake.. The dermal nitrogen excretion, however,

increased as protein intake increased. This difference

between calcium and nitrogen most likely was a conse-

quence of difference in plasma levels of calcium and

urea. Plasma concentration of urea were increased during

higher protein intake, but plasma calcium was not affected

by either protein or calcium intake. A good correlation

between plasma urea level and nitrogen in sweat was
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Sirbu et al. (189) and Costa et al. (51).

The average daily loss of calcium in sweat was

about 15 mg per day in this study. This value is

approximately the same as that estimated by Leitch

and Aitken (46),Gitelman and Lutwak5, McKay et al.6;

however, it is much lower than that obtained in a study

by Consolazio et al. (48). They estimated a loss 3 mg

per hour or 72 mg per day for subjects resting under

comfortable conditions. The difference possibly resulted

from the method of study. They collected sweat from

arm bands rather than determing total body sweat as was

done in this study. Sweat collected from arm bands has

been shown to be more concentrated for many substances

(89,199). A later report from Consolazio et al. (200)

also showed that the concentration of calcium in arm

sweat was slightly higher than total body sweat. The

lengh of interval of collection was also different be-

tween our study and that of Consolazio et.al. (48). They

apparently neglected the factor of acclimatization since

sweat was collected over a short interval. The volume

of sweat as well as the concentration of calcium has

been shown to decline dramatically in a period of few

hours (49, 52). Thus, the values of Consolazio et al.

(48) was possible overestimated.

Although the daily loss of calcium in sweat is

small, this amount should not be neglected. It becomes
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a relatively more important route for calcium loss when

the urinary calcium excretion decreases. In the present

study, more calcium was excreted in sweat than in urine

in one period by one subject. Calcium loss in sweat

also increased greatly following strenous physical ac-

tivity even during the low calcium intake periods.

These findings emphasize that calcium loss in sweat

must be taken into consideration in calcium balance

studies, in kinetics studies and in establishing require-

ment for calcium intake.

In addition to changes in urinary calcium excretion,

intestinal calcium absorption can also be affected by

a low calcium and variable protein intake. The average

factional absorption was 70% during the low calcium

intake. This rate is distinctly higher than that pre-

viously reported (Table 1). Intestinal calcium absorp-

tion was also shown to be enhanced by higher protein

intakes.

The amount of calcium in the feces was greater than

the ingested calcium during the periods of low calcium

intakes except in one period for one subject. From the

average fractional absorption rate and net 4 7calcium

absorption study, it appears that only 30 mg of the

average fecal calcium (145 mg) was of dietary origin;

the rest was endogenous fecal calcium. This indicated

that a large amount of endogenous calcium was being
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secreted into gut.

A large volume of digestive juice is secreted per

day (4-10 1) and the calcium concentration in these

fluids varies from 2.1 to 14.4 mg per 100 ml (126).

Calculated from these values, the total digestive juice

calcium has been estimated to be between 300 to 1100 mg

per day (126).

Digestive juice calcium has been considered by some

investigators as being a more physiologically meaningful

vector than endogenous fecal calcium (17); however, the

amount of calcium in digestive juice is difficult to

measure. Two of the three calculation made in this study

were done according to the method of Aubert et al. (17)s

Vd= Vef / (l-a). We also used a continuous oral feeding

method to assess the digestive juice calcium directly.

This method has not been reported previously in the

literature for measurement of digestive juice calcium.

At the end of seven days of continuous oral feeding of

47 47calcium, the specific activity of calcium in feces

and urine almost reached a steady state (117). From

47
the specific activity of calcium in dietary, urinary

and fecal calcium, the amount of calcium secreted into

the gut can calculated. Two subjects who had been mea-

sured by this same method in a previous experiment showed

almost identical values even with a high calcium intake

of approximately 1.5 gm per day. Such reproducibility
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indicates this direct method gives a better estimation

of digestive juice calcium.

Malm (126) estimated the digestive juice at an

average of about 750 mg per day with a range from 400

to 1100 mg. From the results of the fecal calcium and

47calcium study, endogenous fecal calcium was estimated

to average about 115 mg per day. The fractional re-

absorption rate of digestive juice calcium would be

more than 85% if 750 mg calcium was secreted with 115

mg endogenous fecal calcium. This fractional absorption

rate of digestive juice calcium would be greater than

that for dietary calcium. The value of Malm (126) is

probably overestimated.

On the other hand, Heaney and Skillman (19) esti-

mated that the digestive juice calcium is 194 * 37 mg

per day. Almost all values from our studies were much

larger than this average. Although no actual values by

direct measurements for total digestive juice calcium

are available for comparison, from our data of fecal

calcium excretion, ratio of specific activity of 47calcium

of dietary and fecal calcium (Table 18) and some avail-

able data of total calcium in some selected digestive

juice (21, 126) the value of Heaney and Skillman would

appear to be underestimated.

The results of this study also gave very diverse

values in the same individual using two different methods
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of calculation. This diversity of calculated values

may indicate the inadequacy of our assumptions for cal-

culation. We assumed that the digestive juice was mixed

homogenously with dietary calcium in the gut and then

both were absorbed at the same rate. Such assumptions

may not be valid. Heaney and Skillman (19) considered

that part of the digestive juice calcium is secreted

into the lower segment of gut where no more calcium

absorption takes place. Schedl et al. (20) found that

one-third of the digestive juice calcium readily formed

calcium phosphate and was precipitated. This precipitated

calcium complex, however, may later be dissociated then

calcium becomes available again for absorption.

Although the determined amount of digestive juice

calcium may not be very accurate, neverless, the large

amount the digestive juice calcium can not be disre-

garded. There is no experimental or clinical evidence

in favor of a regulated digestive juice calcium (126).

However, this large amount of calcium provide a homeo-

static mechanism to prevent large fluctuation of calcium

in the gut. The significance of this digestive juice

calcium becomes even more important during low calcium

intake such as in the present study. The secreted cal-

cium was many times larger than the ingested calcium.

The present study also showed a wide variation

of digestive juice calcium between the individuals.
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The amount of calcium absorbed from the digestive juice

calcium supposedly is also quite varied. On the analysis

of the correlation between calcium absorption and other

parameters of calcium metabolism, however, Bronner et

al, (30), Bronner (5), Malm (43) and Phang et al. (32)

neglected this reabsorbed calcium from digestive juice

calcium.

Other components in digestive juice besides calcium

need to be considered when evaluating calcium absorption.

Although a low calcium diet caused a significant increase

in the efficiency of calcium absorption. Fromm et al.

(201) did not find any enhancement in the efficiency in

radiocalcium absorption during fasting even when the

calcium in the gut was very low. This may suggest that

the digestive juice secreted in response to the stimu-

lation by food greatly enhanced the absorption of calcium.

Because an increase in the intake of protein can enhance

calcium absorption, the protein content of digestive

juice may be a very important factor involved in mo-

difying calcium absorption. Nasset and his colleagues

(148 for rev.) have shown that the gut contributes a

large amount of protein from digestive juice and shed

mucosa cells in order to prevent a large fluctuation of

amino acids in the gut. The significance of a constant

molar ratio of different amino acids in the gut in

relation to calcium absorption is unknown.
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In experimental animals, it has been shown that the

protein content of the digestive organs decreases rapidly

during a protein free diet. The decrease in endogenous

protein from the digestive juice and shed cells would be

expected as a consequence of prolonged protein-free diet.

Such an effect may have contributed to the decrease in

calcium absorption observed during the protein-free diet

period.

Bone is the enormous reservoir of calcium. The

total negative balance of calcium of 5.1 to 16.3 gm in

45 or 60 days represents only 0.4 to 1.0 % of the total

calcium in bone. Two methods have been employed at the

end of each period to study the mineral changes in bone

(Appendix 4 and 5). At the end of 45 or 60 days, no

consistent and significant change was noted using either

method. Sorenson and Cameron indicated that at least a

2% error in accuracy and reproducibility existed in

their photonbean scanning method. Vose also estimated

that the error can be as large as 20% in X-ray densi-

tometric study of bone (202). Both methods are apparently

not sensitive and precise enough to detect this small

change. Selective calcium loss in bones studied is also

not likely.

The plasma alkaline phosphatase can be used as an

index of bone matrix formation (99). Although there

were marked differences in calcium excretion and balance
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in various periods in the same individual, no signifi-

cant differences in plasma aklaine phosphatase activity

were observed in same individual by variation either in

protein or calcium intake. This finding suggests that

either the measurement of this enzyme activity was not

sensitive enough to detect the change in bone matrix

formation or else bone matrix formation was not altered

by the different diets.

On the other hand, urinary hydroxyproline is a good

index of the rate of breakdown of bone collagen (102, 103).

In the present study, urinary hydroxyproline increased

markedly as the protein intake increased. Schffelder

(203) measured the urinary hydroxyproline excretion at

three levels of protein intake -- 12, 48, 94 gm nitrogen

per day. There was marked increase in the urinary calcium

with high protein intake. She did not find significant

differences in urinary hydroxyproline between the 3 levels

of protein intake if an hydroxyproline-free formula was!

used. However, if turkey and shrimps were substituted

for the egg albumin and casein as the protein source,

she found a large increase in urinary hydroxyproline with

essentially the same effect of protein on calcium ex-

cretion. Some subjects who had participated in previous

experiments in this laboratory in which formula diets

with different levels of protein were used also excreted

approximately the same amount of hydroxyproline as was
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found during the protein-free period of the present

experiment. In the present study, good correlation was

noted between rate of calcium leaving the bone and

urinary hydroxyproline of protein-free diet period

but not between rate of calcium leaving bone and urinary

hydroxyproline during period 2 (Table 22). All these

findings indicated that the increase in urinary hydroxy-

proline excretion during the higher protein intake

periods resulted from a high content of hydroxyproline

in the diet rather than effect of protein intake on

the metabolism of bone collagen.

In contrast to the alkaline phosphatase and urinary

hydroxyproline excretion, radiocalcium studies provided

more information on calcium metabolism in bones.

The miscible pool size of calcium of the subjects

in the present study varied from 2724 to 6505 mg (Table

19). These values are similar but slight less in some

subjects as compared to values of limited numbers of

normal subjects of Bronner et al. (30) and Heaney (204).

The higher "corrected" specific activity of urinary

47calcium on the first day after injection (Figure 3)

also suggested a smaller pool size. This study was

carried out 3-4 weeks after initiation of a very low

calcium intake. The miscible pool size of calcium under

this circumstances might well be affected. Although

many studies have been done on the assumption that the

,:: ·
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calcium miscible pool size is not affected when calcium

intake varied between 200-2000 mg per day (32), Heaney

(204) and Bronner et al. (30) have shown significant

decrease in pool size in patients with chronic disuse

osteoporosis and postmenopausal osteoporosis.

Marked differences in the time course of pool

47calcium specific activity between the subjects of

different protein intake may be more significant. Both

subjects 3 and 4 were studied during medium-protein diet

period. Both had smaller turnover of calcium pool than

the others but subject 4 had a definite decrease in the

slope after day 3. Phang et al. (32) also observed a

curve similar to the one for subject 4 when their subjects

consumed a low calcium intake of 200 mg per day. This

decrease in the slope for subject 4 but not for subject

3 may be explained by the dramatic decrease in calcium

excretion for subject 4 when he consumed a low calcium

diet. The difference in urinary calcium excretion between

2 periods of medium-protein diet with or without calcium

supplementation was more than 100 mg per day for subject

4 compared to less than 30 mg for subject 3 (Table 12).

The dilution of tracer proceeded more rapidly for

subjects 1, 2, 5 and 6. Comparison of the calcium kinetics

data of the present study with that of the normal subjects

of Bronner et al (30) and Heaney (204) shows that the

rates of calcium entering and leaving bone were higher
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than the range for a limited number of their normal

subjects, but the pool size was slightly decreased in

some subjects. Although the urinary and fecal excretion

was decreased during the low calcium intake in this ex-

periment, the amount of decrease in excretion is much

less than the amount of increase in rate of calcium

entering the bone. Turnover rate is determined by pool

size and dalcium in urine, feces, sweat and entering

bone (i.e. m= VT / P , VT= Vu + V + +V V see

page 52-53). Because of the decrease in pool size and

increase in VT, the turnover rate is expected to increase

in these subjects.

Because the subjects had either high-protein (sub-

ject 2 and 5) or protein-free (subjects 1 and 6) diets,

further investigation is needed to determine whether

these findings were the result of interindividual va-

riation or the effect of protein intake. Comparing the

similar time course curves of specific activity of pool

47calcium after cessation of oral calcium (Figure 4),

there was little or no difference between the subjects

after a medium-protein diet with or without calcium

supplementation. The changes in turnover rate may be

partly due to the effect of protein intake.

The mechanism of increase in turnover during very

low calcium intake with either high-protein or protein-

free diet has not been studied. Increase in the negative
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calcium balance during high-protein and protein-free

diet periods may be one of the inducing factors. Be-

cause there is a regulatory mechanism for coupling

processes between the calcium entering and leaving the

bone (5, 30, 104), an increase in negative calcium

balance during both high-protein and protein-free

diet periods could cause an increase in calcium turn-

over in bone. There is no evidence to show that the

metabolism of bone collagen is changed by variation in

protein intake. However, dietary variations has

been shown to induce structural changes in collagen

in ratl4 (96). Such change in collagen in turn may

cause alteration in rate or stability of the interaction

between calcium and collagen. Decrease in calcium

intake may be an additional important factor. El-

Maraghi et al. (169) considered that insufficient cal-

cium may stimulate the resorption of existing bone in

order to provide necessary minerals for mineralization

of bone matrix.

A linear, relationship has been demonstrated between

intestinal calcium absorption and rate of calcium

entering bone (30, 32); between intestinal calcium

absorption and urinary calcium (32, 43); between rates

of calcium entering and leaving bone (5, 30, 104);

between urinary calcium and endogenous fecal calcium

(32); and between intestinal calcium absorption and rate

of calcium leaving bone (32). However, it has not been

. . , , , X,, ' b~~~~~~~~~~~~~~/ 
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demonstrated which one of these rates is the independent

variable. Any one of these variables may be considered

as an independent or dependent variable. In addition,

it is also possible that all these relationships are

functions of some unknown independent factor or factors.

Our data provide some information from which speculation

can be made regarding which of the effects on kidney,

gut or bone is of primary importance in the calciuretic

effect of high protein intake.

Because of very low intake of calcium there was

almost no difference in the amount of dietary calcium

absorbed in different periods by the same individual.

However, there was still a wide variation in urinary

calcium excretion in different periods. Moreover, this

study shows an increase in urinary calcium excretion

but a decrease in endogenous fecal calcium during the

high protein intake. These two findings are contradictory

to a common regulatory mechanism such as described by

Phang et al. (32). Their hypothesis of a common regu-

latory mechanism for gut, kidney, and bone was not

valid under the present experimental condition.

The results of this experiment show that the

calciutetic effect of a high protein intake isunot neces-

sarily a result of an increase in intestinal calcium

absorption. It resulted primarily from the inhibition

of renal tubular reabsorption of calcium during high
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protein intake. Increase in the amount of dietary

calcium absorbed may augument this effect. The effects

on calcium metabolism in bone are likely secondary to

the calcium balance of the body, but the possibility

that these effects resulted primarily from alteration

of bone metabolism by variable protein intake can not

be ruled out.

A wide variation in pattern and magnitude of re-

sponses by the gut, kidney and bone are demonstrated

in this experiment. An increase in protein intake from

0.9 to 12 gm nitrogen per day caused a dramatic increase

in urinary calcium on subjects 1 and 3 but had little

effect on subjects 5 and 6. However, a further increase

in protein intake to 24 gm resulted in large increase

in subjects 5 and 6 but almost no increase for subject

1 (Table 12). "Sensitivity" of urinary calcium excre-

tion to variation in protein intake apparently differs

between individuals.

On the other hand, increase in protein from 0.9 gm

to 12 gm or 24 gm nitrogen per day caused more than

200 or 500 % increase in urinary calcium excretion for

subject 3. The actual amount of difference in urinary

calcium, however, was smaller thhn that of fecal calcium

(Table 12). This indicated that the gut may be more

important for certain individuals in the regulation of

calcium balance. Individual differences in the responses



110

of the gut and kidney to low calcium intake have been

observed by some investigators (see page 23-26). Such

differences in individual responses may partly explain

the contradictory results f6und for the effect of protein

intake on calcium metabolism (Table 3).

The effect of variable protein intake on calcium

balance during low calcium intake also was a significant

result observed in this experiment. The least negative

calcium balance was found in 5 subjects during the medium

protein intake period. Although there were slight differ-

ence in calcium intake during the different periods in

this study. The magnitude of change in fecal and uri-

nary calcium in most cases was larger than the differences

in calcium intake. It is not likely that the differences

in calcium balance resulted primarily from the differ-

ences in calcium intake. The large negative balance

during the high-protein or protein-free diet periods

resulted mainly from an increase in urinary or fecal

calcium excretion.

Only a few investigations have been reported using

a diet approaching this level of calcium intake. Bauer

et al. (132) tried to approximate an "endogenous calcium

excretion" with a low calcium intake averaging 110 mg

per day, All 27 subjects were in negative balance and

daily "endogenous calcium excretion" was about 3.9 mg

per kg body weight per day. Other studies on the eva-

' ·,s ir
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lution of special diets such as a maize diet (206), pure

meat diet (133) and Taro diet (128) also had very low

calcium intake between 80-110 mg per day. Protein in-

take was not well controlled in these experiments. Large

negative balance resuted from increase in urinary calcium

excretion in the subject who had a high protein intake

of pure meat diet (133).

Our observations are also in consistent with the

results of McKay et al. (207) and Johnson et al. (167).,

MeKay et al noted that the group Which consumed the ex-

perimental diets retained more calcium than the the

group which consumed self-chosen diets at the same cal-

cium intake. The experimental diet had more consistent

protein intake, 8.85-13.51 gm nitrogen per day, whereas

the self-chosen diets ranged between 5.55 to 16.27gm

nitrogen per day. Johnson et al., found an increase in

protein intake from 48 to 141 gm per day caused an in-

crement of 163 gm daily in urinary calcium but an in-

crement of only 69 mg in apparent absorption. This re-

sulted a sustantial negative balance on high protein

intake even at calcium intake of 1400 mg per day.

The effect of variation in protein intake on cal-

cium requirement has been neglected in many studies

conducted to assess calcium requirement (3, 126). Bauer

et al. (132) attempted to estimated requirements by mea-

suring the "endogenous calcium excretion". However,
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there was about a 25% difference in the "endogenous

calcium excretion" between the medium- and high-protein

periods in the present study. High protein diet with a

low calcium intake is not uncommon in this country.

This study demonstrates that the level of protein must

be taken into consideration when making recommendations

for calcium requirement.

The significance of low calcium and high protein

intake on the development of osteoporosis also should

be emphazised. Osteoporosis resulting from a high

protein and low calcium intake has been demonstrated in

experimental animals (169-171). The results of the

present experiment suggest that there is the same.

tendency for adult men. A negative balance of 50 mg

per day continued for 30 years would result a total

loss of 550 gm calcium, that is, of more than one-third

of the total calcium in the body. Moreover, only a

slightly positive balance was achieved by calcium supple-

mentation after a long period of negative calcium balance.



SUMMARY

Six healthy young males were confined to a meta-

bolic unit for 60 days. During the first three periods

of 15 days each, they consumed three controlled diets

containing about 0.1 gm calcium per day at three levels

of protein intake: 0.9 (protein-free), 12 (medium-protein)

and 24 (high-protein) gm nitrogen per day. Four of the

subjects were given 0.9 gm calcium supplements per day

while at medium-protein intake during the last 15 days.

This experiment attempted to study the effect of

protein intake on calcium metabolism at very low calcium

intake and to eludicate the mechanisms of the calciuretic

effect of high protein intake.

There was a wide variation in calcium metabolism

between individuals. Average daily urinary calcium in-

crease from 51 mg on protein-free diet to 99 mg on

medium-protein diet and 161 mg on high-protein diet.

A 0.9 gm calcium supplement per day at medium-protein

diet increased the daily urinary calcium of 4 subjects

from 68 mg to 160 mg. Average daily fecal calcium was

174, 133, 128 mg on protein-free, medium-protein, high-

protein diets, respectively. Usual sweat loss of calcium

remained at about 15 mg per day regardless of the protein

and calcium intakes. Five subjects had the least negative

calcium balance during medium-protein diet period. Plasma

'!13
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calcium and alkaline phosphatase remained unchanged

throughout the experiment. During strenous exercise,

sweat loss of calcium increased to 25 mg in a 40-minute

interval.

47The calcium study showed an average 70% fractional

absorption rate during the very low calcium intake. The

increase in protein intake tended to enhance the fractional

absorption rate. The miscible pool of calcium was 2724

to 6506 mg. The turnover rate of the calcium pool and

the calculated rates of calcium entering or leaving bone

were higher on the subjects on protein-free and high-pro-

tein diets. Estimated calcium secreted into the gut

varied considerably depending on the method. A method

of continuous 1-ow dose radiocalcium feeding seemed to be

the best. 206 - 1135 mg per day for endogenously secreted

calcium was estimated using this method.

Our data demonstrated that decrease in renal tubular

reabsorption of calcium is responsible for the calciuretic

effect of the high protein intake. Inhibition of a spe-

cific reabsorptive process in the tubular cells presumably

through the inhibition of involved enzymes was postulated

as mechanism to explain the decrease in calcium reabsorption.

Increase in urinary calcium is not necessarily a result

of enhancement of intestinal calcium absorption, but in-

crease in the amount of dietary calcium absorbed may

augument this effect.
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This study suggested that protein intake must be

taken into consideration when making the recommendation

for calcium requirements or allowances. There may also

be a tendency to develop osteoporosis after long period

on low calcium intake especially with a concurrent high

protein intake.
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Appendix 1.

Procedures for Preparation of Urinary Samples for Radio-

activity Determination ,

1. Acidify the urine to pH 1 using conc. HC1 solution.

2. Put the flasks on a steam bath for about 15 min. to
solubilize the calcium phosphates.

3. Remove the flasks from bath and add 10 ml 2.5 % oxalic
acid per 100 ml urine.

4. Add conc. NH OH to bring pH to 4.8-5.3 using bromocresol
green as indicator.

5. Let stand overnight to allow calcium oxalate precipi-
tate to settle.

6. Decant or siphon off the supernatant after the preci-
pitate has settled.

7. Transfer the precipitate to a centrifuge tube and wash
the precipitate twice with a 2.5% oxalic acid solution.

8. Add approximately 10 ml or more concentrated HC1 so-
lution to the tube, shake and stir.

9. Centrifuge the tube again and transfer the supernatant
to a counting tube and adjust the final volume to 10
ml with conc. HC1. 

10. After determination of radioactivity, dilute the solu-
tion in counting tube to an appropriate volume with
1 N HC1 solution and determine the calcium content
by atomic absorption'speCtrophotometry.
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Appendix 2.

Procedures of Preparation Fecal Samples for Radioactivity

Determination:

1. Weigh the bucket to determine the weight of feces.

2. To the feces add 2 N HC1 solution in a ratio of 2 or
more parts of HC1 solution to 1 part of feces.

3. Homogenize the feces and HC1 solution using the poly-
tron, keep an aliquot of homogenate for calcium
determination ( for daily fecal calcium).

4. Add enough concentrated HC1 solution to the homogenate
to bring pH to 1 using methyl red as an indicator.

5. To the homogenate add twice its volume of acetone and
filter through a coarse filter paper (No. 515, Eaton-
Dikeman Co.).

6. To the filtrate, add 10 ml of 2.5% oxalic acid per 100

ml filtrate.

7. Add conc. NH OH solutiion to the filtrate and bring
the pH of tie filtrate to pH 4.8-5.3 using bromo-
cresol green as indicator.

8. Let stand over night for calcium oxalate precipitate
to settle.

9. Decant or siphon off the supernatant after the preci-
pitate has settled.

10. Transfer the precipitate to centrifuge bottles and wash
the precipitate twice with 2.5% oxalic acid.

11. Add few ml' of oxalic acid to the washed precipitate to
make a slurry and transfer directly to a counting tube
for radioactivity determination. The slurry is then
washed into a large volumetric flask with conc. HC1
solution and filtered. Diluted the filtrate to an
optimal concentration for calcium determination.

12. Alternatively, add 20-60 ml conc. HC1 solution to the
slurry to dissolve the calcium'oxalate, transfer the
clear supernatant solution after centrifuge to a
counting tube and adjust the final volume to 10 ml.
Radioactivity and calcium content in the tube is de-
termined using the same method as for the urinary
preparation.
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Aond i 32

Assumption and Derivation of the Equations

1. Equation 1

Because endogenous fecal calcium and urinary calcium are

considered to come from same pool of extracellular fluid,

the specific activity of endogenous fecal calcium and uri-

nary calcium are ,the same,
Ref RU Ref x VU

S. A. ecf = , and Vef
Ve V Ru

Ref equals RF if radiocalcium is given intravenously.

2. Equation 7

Because the ingested calcium is assumed to be mixed homo-

genously with digestive juice calcium and both absorbed at

the same rate, specific activity of fecal calcium is the

same as the specific activity of calcium in the intestine,

Vd x S.A.ee
f

+ R
i

V
d

X S.A.u + R
i

S.A.
F
= =

Vd + Vi Vd + Vi

Rearangement of the above equation gives equation 7.

3. Equation 8
R Ref

V V
u V+ ef V Ri 

+
Ref RF

b) a F
V i Ri

Ru
c) Ref - x Vf , from a)

Vu

Substitute c) in equation b) for Ref. Rearrangement the

substituted equation gives equation 8
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Appendix 4

X-Ray Aluminum Equivalencies for Phalanx 5-2 at

End of Each Perioda

Period Subject
1 2 3 4 5 6

cm

On admission .223 .222 .201 .231 .207 .224

1st .214 .217 .194 .222 .193 .218

2nd .220 .232 .207 .228 .207 .224

3rd .222 .231 .204 .218 .195 .225

4th .222 .226 .201 .219 .200 .215

aCourtesy of Dr. G.P. Vose. Roentgenograms were taken
in Berkeley under the instruction of Dr. Vose and then
sent to Texas Women University, Denton, Texas for eva-
luation. The method of radiographic densitometry have
been reported elsewhere ( 202, 207).



141

Appendix 5

Mineral Content of Distal Left Radiusa

Period ....... Sub.je

gm/cm
on admission 1.23 1.03 0.82 1.12 1.05 1.66

1st 1.34 0.97 0.84 1.13 0.75 1.63

2nd 1.30 1.05 0.86 1.22 0.97 1.63

3rd 1.40 1.10 0.85 1.18 0.98 1.59

4th 1.38 1.13 0.88 1.19 0.94 1.61

aCourtesy of Dr. N.F. Goldsmith. Mineral Content was measured
by her using the method of Sorenson and Cameron'( 111) at
the end of each period.


